Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090316    DOI: 10.1088/1674-1056/19/9/090316
GENERAL Prev   Next  

Generation of GHZ state and cluster state with atomic ensembles via the dipole–blockade mechanism

Ni Bin-Bin(倪彬彬)a), Gu Yong-Jian(顾永建)b), Chen Xiao-Dong(陈晓东)a), Liang Hong-Hui(梁鸿辉)a), Lin Xiu(林秀)a), and Lin Xiu-Min(林秀敏)a)†
a School of Physics and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007, China; b Department of Physics, Ocean University of China, Qingdao 266100, China
Abstract  This paper proposes scalable schemes to generate the Greenberger–Horne–Zeilinger (GHZ) state and the cluster state with atomic ensembles via the dipole blockade mechanism on an atom chip, where the qubit is not carried by a single atom but an atomic ensemble. In the protocols, multiqubit entangled states are determinately prepared. Needlessness for single-photon source further decreases the complexity of the experiment. Based on the present laboratory technique, the schemes may be realized. The achieved results reveal a prospect for large-scale quantum communication and quantum computation.
Keywords:  dipole–blockade mechanism      n-qubit GHZ state      n-qubit cluster  
Received:  22 October 2009      Revised:  19 December 2009      Accepted manuscript online: 
PACS:  0367  
  4250  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60878059, 10947147, 60677044, and 10574022), the Natural Science Foundation of Fujian Province of China (Grant No. 2007J0002).

Cite this article: 

Ni Bin-Bin(倪彬彬), Gu Yong-Jian(顾永建), Chen Xiao-Dong(陈晓东), Liang Hong-Hui(梁鸿辉), Lin Xiu(林秀), and Lin Xiu-Min(林秀敏) Generation of GHZ state and cluster state with atomic ensembles via the dipole–blockade mechanism 2010 Chin. Phys. B 19 090316

[1] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[2] Mermin N D 1990 Phys. Rev. Lett. 65 1838
[3] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[6] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648 bibitem6+1 Scarani V and Gisin N 2001 Phys. Rev. Lett. 87 117901
[7] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[8] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[9] Zheng S B 2006 Phys. Rev. A 73 065802
[10] Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
[11] Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
[12] Lin X, Li H C, Lin X M, Li X H, Li X H and Yang R C 2007 Chin. Phys. 16 1209
[13] Wang J, Yu L B and Ye L 2007 Chin. Phys. B 16 2211
[14] Huang X H, Lin X M, Lin G W, Chen Z H and Tang Y X 2008 Chin. Phys. B 17 4382
[15] Lu X S, Shi B S and Guo G C 2009 Chin. Phys. B 18 5133
[16] Lukin M D 2003 Rev. Mod. Phys. 75 457
[17] Duan L M 2002 Phys. Rev. Lett. 88 170402
[18] Ping D, Zheng Y X, Ming Y and Zhuo L C 2006 Phys. Rev. A 73 033818
[19] Zwierz M and Kok P 2009 Phys. Rev. A 79 022304
[20] Lukin M D, Fleischhauer M, Cate R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
[21] Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
[22] Vogt T, Viteau M, Zhao J, Chotia A, Comparat D and Pillet P 2006 Phys. Rev. Lett. 97 083003
[23] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, C^ot'e R, Eyler E E and Gould P L 2004 Phys. Rev. Lett. 93 063001
[24] Singer K, Lamour M R, Amthor T, Marcassa L G and Weidem"uller M 2004 Phys. Rev. Lett. 93 163001
[25] Liebisch T C, Reinhard A, Berman P R and Raithel G 2005 Phys. Rev. Lett. 95 253002
[26] Anderson W R, Veale J R and Gallagher T F 1998 Phys. Rev. Lett. 80 249
[27] Mphi ller D, Madsen L B and Mphi lmer K 2008 Phys. Rev. Lett. 100 170504
[28] Brion E and Mphi lmer K 2007 Phys. Rev. Lett. 99 260501
[29] Tordrup K and Mphi lmer K 2008 Phys. Rev. A 77 020301
[30] Fort'ah J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
[31] Folman R, Kruger P, Schmiedmayer J, Denschlag J and Henkel C 2002 Adv. At. Mol. Opt. Phys. 48 263
[32] Treutlein P, Hommelhoff P, Steinmetz T, Hansch T W and Reichel J 2004 Phys. Rev. Lett. 92 203005
[33] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature (London) 414 413
[34] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[35] Barrett S D, Rohde P P and Stace T M 2008 arXiv:0804.0962v1
[36] Hammerer K, Sorensen A S and Polzik E S 2008 arXiv:0807.3358v2
[37] Walker T G and Saffman M 2005 J. Phys. B 38 S309
[38] Yan H, Yang G Q, Shi T, Wang J and Zhan M S 2008 Phys. Rev. A 78 034304
[39] Singh M, Volk M, Akulshin A, Sidorov A, McLean R and Hannaford P 2008 J. Phys. B 41 065301
[40] Lukin M D 2003 Rev. Mod. Phys. 75 457
[41] Hommelhoff P, Hansel W, Steinmetz T, Hansch T W and Reichel J 2005 New J. Phys. 7 3 endfootnotesize
[1] Fast generation of cluster states in a linear ion trap
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Zhang Xiao-Long(张小龙), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(9): 090317.
[2] Protecting entanglement by detuning: in Markovian environments vs in non-Markovian environments
Huang Li-Yuan(黄利元) and Fang Mao-Fa(方卯发). Chin. Phys. B, 2010, 19(9): 090318.
[3] Thermal entanglement in two-qutrit spin-1 anisotropic Heisenberg model with inhomogeneous magnetic field
Erhan Albayrak. Chin. Phys. B, 2010, 19(9): 090319.
[4] Generation of a four-particle entangled state via cross-Kerr nonlinearity
Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(9): 094207.
[5] Concurrence, tangle and fully entangled fraction
Li Ming(李明), Fei Shao-Ming(费少明), and Li-Jost Xianqing(李先清). Chin. Phys. B, 2010, 19(9): 090315.
[6] Quantum logic networks for controlled teleportation of a single particle via W state
Yuan Hong-Chun (袁洪春), Qi Kai-Guo (齐开国). Chin. Phys. B, 2005, 14(5): 898-901.
No Suggested Reading articles found!