Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 086104    DOI: 10.1088/1674-1056/19/8/086104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Diffusion activation energy versus the favourable energy in two-order-parameter model:A molecular dynamics study of liquid Al

Li Yi-De(李宜德)a)b), Hao Qing-Hai(郝清海)a), Cao Qi-Long(曹启龙)a), and Liu Chang-Song(刘长松)a)
a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031, China; b School of Physics and Material Science, Anhui University, Hefei 230039, China
Abstract  In the present work, we find that both diffusion activation energy Ea(D) and Ea(Sex) increase linearly with pressure and have the same slope (0.022±0.001 eV/GPa) for liquid Al. The temperature and pressure dependence of excess entropy is well fitted by the expression -Sex(T,P)/kB=a(P)+b(P)T+c(P)exp(Ef/kBT), which together with the small ratio of Ef/kBT leads to the relationship of excess entropy to temperature and pressure, i.e. Sex$\simeq$-cEf/T, where c is about 12 and Ef (=Δ E - PΔV) is the favourable energy. Therefore, there exists a simple relation between Ea(Sex) and Ef, i.e. Ea(Sex$\simeq$ cEf.
Keywords:  activation energy      favourable energy      molecular dynamics simulation  
Received:  04 January 2010      Revised:  02 February 2010      Accepted manuscript online: 
PACS:  61.25.Mv (Liquid metals and alloys)  
  61.20.Ja (Computer simulation of liquid structure)  
  65.20.-w (Thermal properties of liquids)  
  66.10.C- (Diffusion and thermal diffusion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674135, 10874182 and 50803066), the Foundation of the Education Committee of Anhui Province, China (Grant Nos. KJ2010A031 and KJ2010A012), and the Funds from the Centre of Computational Science, Hefei Institutes of Physical Sciences.

Cite this article: 

Li Yi-De(李宜德), Hao Qing-Hai(郝清海), Cao Qi-Long(曹启龙), and Liu Chang-Song(刘长松) Diffusion activation energy versus the favourable energy in two-order-parameter model:A molecular dynamics study of liquid Al 2010 Chin. Phys. B 19 086104

[1] Rosenfeld Y 1977 Phys. Rev. A 15 2545
[2] Rosenfeld Y 1999 J. Phys.: Condens. Matter 11 5415
[3] Rosenfeld Y 2000 Phys. Rev. E 62 7524
[4] Dzugutov M 1996 Nature 137 381
[5] Mittal J, Errington J R and Truskett T M 2006 Phys. Rev. Lett. 96 177804
[6] Mittal J, Errington J R and Truskett T M 2006 J. Chem. Phys. 125 076102
[7] Errington J R, Truskett T M and Mittal J 2006 J. Chem. Phys. 125 244502
[8] Nettleton R E and Green M S 1958 J. Chem. Phys. 29 1365
[9] Mountain R D and Raveche H 1971 J. Chem. Phys. 35 2250
[10] Baranyai A and Evans D J 1989 Phys. Rev. A 40 3817
[11] Hoyt J J, Asta M and Sadigh B 2000 Phys. Rev. Lett. 85 594
[12] Samanta A, Ali S M and Ghosh S K 2001 Phys. Rev. Lett. 87 245901
[13] Samanta A, Ali S M and Ghosh S K 2004 Phys. Rev. Lett. 92 145901
[14] Samanta A, Ali S M and Ghosh S K 2005 J. Chem. Phys. 123 084505
[15] Li G X, Liu C S and Zhu Z G 2005 Phys. Rev. B 71 094209
[16] Young T and Andersen H C 2005 J. Phys. Chem. B 109 2985
[17] Sharma R, Chakraborty S N and Chakravarty C 2006 J. Chem. Phys. 125 204501
[18] Sharma M and Yashonath S 2008 J. Chem. Phys. 129 144103
[19] Hoover W G 1986 Molecular Dynamics: Lecture Notes in Physics (Berlin: Springer-Verlag)
[20] Bisquert J, Henn F and Giuntini J C 2005 J. Chem. Phys. 122 094507
[21] Grabowski C A and Mukhopadhyay A 2007 J. Chem. Phys. 127 171101
[22] Egelstaff P A 1992 An Introduction to The Liquid State (Oxford: Clarendon Press)
[23] Li Y D, Hao Q H, Cao Q L and Liu C S 2008 Phys. Rev. B 78 174202
[24] Tanaka H 1998 Phys. Rev. Lett. 80 5750
[25] Hou Z Y, Liu L X, Liu R S and Tian Z A 2009 Acta Phys. Sin. 50 4817 (in Chinese)
[26] Hou Z Y, Lin Y, Liu Q H, Liu R S, Tian Z A and Zhou L L 2008 Acta Phys. Sin. 57 3653 (in Chinese)
[27] Bian X F, Li H, Song X G, Zhang J and Zhang J X 2009 Chin. Phys. B 18 4949
[28] Ercolessi F and Adams J B 1994 Europhys. Lett. 26 592
[29] Sun D Y and Gong X G 1998 Phys. Rev. B 57 4730
[30] Fang Q F and Wang R 2000 Phys. Rev. B 62 9317
[31] Liu C S, Zhu Z G, Xia J and Sun D Y 2001 J. Phys.: Condens. Matter 13 1873
[32] Li G X, Liang Y F, Zhu Z G and Liu C S 2003 J. Phys.: Condens. Matter 15 2259
[33] Forsblom M, Sandberg N and Grimvall G 2004 Phys. Rev. B 69 165106
[34] Forsblom M and Grimvall G 2005 Phys. Rev. B 72 132204
[35] Abaraham F F 1980 J. Chem. Phys. 72 359
[36] Iida T and Guthrie R I L 1988 The Physical Properties of Liquid Metals (Oxford: Clarendon Press)
[37] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[38] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[39] Tanaka H 2000 J. Chem. Phys. 112 799
[40] Tanaka H 2002 Phys. Rev. B 66 064202
[41] Qin J, Gu T and Yang L 2009 J. Non-cryst. Solids 355 2333
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!