Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080302    DOI: 10.1088/1674-1056/19/8/080302
GENERAL Prev   Next  

Stability for manifolds of equilibrium states of generalized Birkhoff system

Li Yan-Min(李彦敏)a)† and Mei Feng-Xiang(梅凤翔)b)
Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000, China; b  Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Stability for the manifolds of equilibrium states of a generalized Birkhoff system is studied. A theorem for the stability of the manifolds of equilibrium states of the general autonomous system is used to the generalized Birkhoffian system and two propositions on the stability of the manifolds of equilibrium states of the system are obtained. An example is given to illustrate the application of the results.
Keywords:  generalized Birkhoff system      manifold of equilibrium states      stability  
Received:  23 November 2009      Revised:  15 December 2009      Accepted manuscript online: 
PACS:  02.40.Sf (Manifolds and cell complexes)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10772025, 10932002 and 10972127), the Natural Science Foundation of Henan Province, China (Grant No. 102300410144), and the Beijing Municipal Key Disciplines Fund for General Mechanics and Foundation of Mechanics, China.

Cite this article: 

Li Yan-Min(李彦敏) and Mei Feng-Xiang(梅凤翔) Stability for manifolds of equilibrium states of generalized Birkhoff system 2010 Chin. Phys. B 19 080302

[1] Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag)
[2] Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag)
[3] Mei F X, Shi R C, Zhang Y F and Wu H B 1996 Dynamics of Birkhoff Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[4] Zhang H B 2001 Acta Phys. Sin. 50 1837 (in Chinese)
[5] Guo Y X, Luo S K and Shang M 2001 Rep. Math. Phys. 47 313
[6] Luo S K, Lu Y B, Zhou Q, Wang Y D and Ou Y S 2002 Acta Phys. Sin. 51 1913 (in Chinese)
[7] Shang M, Guo Y X and Mei F X 2007 Chin. Phys. 16 292
[8] Ge W K and Mei F X 2007 Acta Phys. Sin. 56 2476 (in Chinese)
[9] Mei F X, Gang T Q and Xie J F 2006 Chin. Phys. 15 1678
[10] Fu J L, Chen L Q, Luo S K, Chen X W and Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese)
[11] Zhang Y 2008 Acta Phys. Sin. 57 5374 (in Chinese)
[12] Gu S L and Zhang H B 2004 Chin. Phys. 13 979
[13] Ding N, Fang J H and Chen X X 2008 Chin. Phys. B 17 1967
[14] Chen X W, Zhang R C and Mei F X 2000 Acta Mech. Sin. 16 282
[15] Chen X W and Mei F X 2000 Mechanics Research Communications 27 365
[16] Chen X W 2002 Chin. Phys. 11 441
[17] Li Y M 2008 J. Henan Normal University 36 52 (in Chinese)
[18] Mei F X 1993 Sci. Chin. Ser. A 36 1456
[19] Mei F X, Zhang Y F and He G 2007 J. Beijing Institute of Technology 27 1035 (in Chinese)
[2] Mei F X, Xie J F and Gang T Q 2008 Acta Phys. Sin. 57 4649 (in Chinese)
[21] Mei F X and Cai J L 2008 Acta Phys. Sin. 57 4657 (in Chinese)
[22] Ge W K and Mei F X 2009 Acta Phys. Sin. 58 699 (in Chinese)
[23] Mei F X, Xie J F and Gang T Q 2008 Acta Mech. Sin. 24 583
[24] Mei F X 1993 Chin. Sci. Bull. 38 311
[25] Mei F X 1996 J. Beijing Institute of Technology 16 245 (in Chinese)
[26] Shi R C, Mei F X and Zhu H P 1994 Mechanics Research Communications 21 269
[27] Fu J L, Chen L Q, Lu Y and Luo S K 2003 Chin. Phys. 12 351
[28] Fu J L, Chen L Q, Xue Y and Luo S K 2002 Acta Phys. Sin. 51 2683 (in Chinese)
[29] Fu J L, Chen L Q, Xue Y and Luo S K 2003 Acta Phys. Sin. 52 256 (in Chinese)
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
No Suggested Reading articles found!