Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 079201    DOI: 10.1088/1674-1056/19/7/079201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Diagnosis of dynamic process over rainband of landfall typhoon

Ran Ling-Kun (冉令坤)a, Yang Wen-Xia (杨文霞)bc, Chu Yan-Li (楚艳丽)d
a Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; b Hebei Weather Modification Office, Shijiazhuang 050021, China; c Hebei Laboratory of Ecological and Enviromental Monitoring, Shijiazhuang 050021, China; d Institute of Urban Meteorology, CMA, Beijing 100089, China
Abstract  This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.
Keywords:  thermodynamic shear advection parameter      convective vorticity vector      horizontal divergence      general potential temperature  
Accepted manuscript online: 
PACS:  92.60.Jq (Water in the atmosphere)  
  92.60.Qx (Storms)  
  92.60.hv (Pressure, density, and temperature)  
  92.60.Kc (Land/atmosphere interactions)  
  92.60.hk (Convection, turbulence, and diffusion)  
  91.90.+p (Other topics in solid Earth physics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB421505), the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KZCX2-YW-206-4), the National Natural Science Foundation of China (Grant Nos. 40875032 and 40875002), the Major Foreland Project of IAP (IAP07201) and the National Science and Technology Project, China (GYH200706042).

Cite this article: 

Ran Ling-Kun (冉令坤), Yang Wen-Xia (杨文霞), Chu Yan-Li (楚艳丽) Diagnosis of dynamic process over rainband of landfall typhoon 2010 Chin. Phys. B 19 079201

[1] Zhou Y S, Cao J and Gao S T 2008 wxActa Phys. Sin.57 6654 (in Chinese)
[2] Huang S X, Cai Q F, Xiang J and Zhang M 2007 wxActa Phys. Sin.56 3022 (in Chinese)
[3] Cao J, Gao S T and Zhou Y S 2008 wxActa Phys. Sin.57 2600 (in Chinese)
[4] Chen Z, Yang K and Wu H 2009 wxActa Phys. Sin.58 4362 (in Chinese)
[5] Wu R S and Tan Z M 1989 wxActa Meteorol. Sin.47 436 (in Chinese)
[6] Li Y D, Liu J and Gao S 2005 wxMeteorol. Sci. Tech.33 7 (in Chinese)
[7] Yang Y, Liu Y, Wan Z, Wu B and Shen W 1994 wxActa Meteorol. Sin.52 379 (in Chinese)
[8] Wu B, Xu C, Liu Y, Zhou L, Yu Y, Wei D and Chen L 1996 wxQuart. J. Appl. Meteorol.7 108 (in Chinese)
[9] Li Y and Shou S 1999 wxJ. Nanjing Institute of Meteorol.22 95 (in Chinese)
[10] Ertel H 1942 wxMeteorol. Zeitschr Braunschweigs6 277
[11] Wu G, Cai Y and Tang X 1995 wxActa Meteorol. Sin.53 387 (in Chinese)
[12] Gao S, Lei T, Zhou Y and Dong M 2002 wxQuart. J. Appl. Meteorol.13 662 (in Chinese)
[13] Bi B, Liu Y and Li Z 2005 wxChin. J. Atmosph. Sci.29 814 (in Chinese)
[14] Chen Z, Gao W, Min W and He G 2006 wxPlateau Meteorol.25 983 (in Chinese)
[15] Gao S, Ping F, Li X and Tao W K 2004 wxJ. Geophys. Res.109 D14106 doi:10.1029/2004JD004807
[16] Gao S, Cui X, Zhou Y, Li X and Tao W K 2005 wxJ. Geophys. Res.110 D17104 doi:10.1029/2004JD005675
[17] Gao S, Li X, Tao W K, Shie C L and Lang S 2007 wxJ. Geophys. Res. 112 D01105 doi:10.1029/2006JD007179
[18] Cui X P 2008 wxChin. Phys. B17 2304
[19] Gao S, Wang X and Zhou Y 2004 wxGeophys. Res. Lett.31 L12113 doi:10.1029/2003GL019152
[20] Wang P and Dai X G 2005 wxActa. Phys. Sin.54 4961 (in Chinese)
[21] Dai X G, Fu C B and Wang P 2005 wxChin. Phys.14 850
[22] Wang P and Dai X G 2004 wxChin. Phys.13 1770
[23] Ran L and Boyd J P 2008 wxChin. Phys. B17 1138
[1] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[2] Spectral dispersion of cloud droplet size distributions and radar threshold reflectivity for drizzle
Xie Xiao-Ning(解小宁) and Liu Xiao-Dong(刘晓东). Chin. Phys. B, 2010, 19(10): 109201.
[3] Analysis of precipitation characteristics of South and North China based on the power-law tail exponents
Feng Guo-Lin(封国林), Gong Zhi-Qiang(龚志强), Zhi Rong(支蓉), and Zhang Da-Quan(章大全) . Chin. Phys. B, 2008, 17(7): 2745-2752.
[4] A phase analysis of vorticity vectors associated with tropical convection
Cui Xiao-Peng(崔晓鹏) . Chin. Phys. B, 2008, 17(6): 2304-2310.
[5] An improved south Asian summer monsoon index with Monte Carlo test
Shi Neng (施能), Gu Jun-Qiang (顾骏强), Yi Yan-Ming (易燕明), Lin Zhen-Min (林振敏). Chin. Phys. B, 2005, 14(4): 844-849.
[6] Interdecadal change of atmospheric stationary waves and North China drought
Dai Xin-Gang (戴新刚), Fu Cong-Bin (符淙斌), Wang Ping (汪萍). Chin. Phys. B, 2005, 14(4): 850-858.
[7] Application of retrospective time integration scheme to the prediction of torrential rain
Feng Guo-Lin (封国林), Dong Wen-Jie (董文杰), Jia Xiao-Jing (贾晓静). Chin. Phys. B, 2004, 13(3): 413-422.
No Suggested Reading articles found!