Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 078701    DOI: 10.1088/1674-1056/19/7/078701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Quasistatic magnetic fields generated by a nonrelativistic intense laser pulse in uniform underdense plasma

Zhang Lei(张蕾)a), Dong Quan-Li(董全力)a)†, Wang Shou-Jun(王首钧)a), Sheng Zheng-Ming(盛政明)a)b), and Zhang Jie(张杰)a)b)
a Beijing National Laboratory of Condensed Matter Physics, Chinese Academy of Sciences, Institute of Physics, Beijing 100190, China; b Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Quasistatic magnetic fields generated by nonrelativistic intense linearly polarized (LP) and circularly polarized (CP) laser pulses in an initially uniform underdense plasma in the collision-dominated limit are investigated analytically. Using a selfconsistent analytical model, we perform a detailed derivation of quasistatic magnetic fields in the laser pulse envelope in the collision-dominated limit to obtain exact analytical expressions for magnetic fields and discuss the dependence of magnetic fields on laser and plasma parameters. Equations for quasistatic magnetic fields including both axial component Bz and the azimuthal one B$\theta$ are derived simultaneously from such a selfconsistent model. The dependence of quasistatic magnetic field on incident laser intensity, transverse focused radius of laser pulse, electron density and electron temperature is discussed.
Keywords:  quasistatic magnetic field      laser      plasma  
Revised:  17 December 2009      Accepted manuscript online: 
PACS:  52.50.Jm (Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))  
  52.38.-r (Laser-plasma interactions)  
Fund: Project jointly supported by the National Natural Science Foundation of China (Grant Nos. 60621063, 60678007, and 10774184), the Chinese Academy of Sciences (Grant No. KJCX2-YW-T01), and the National Basic Research Program of China (Grant No. 2007CB815101).

Cite this article: 

Zhang Lei(张蕾), Dong Quan-Li(董全力), Wang Shou-Jun(王首钧), Sheng Zheng-Ming(盛政明), and Zhang Jie(张杰) Quasistatic magnetic fields generated by a nonrelativistic intense laser pulse in uniform underdense plasma 2010 Chin. Phys. B 19 078701

[1] Mourou G and Umstadter D 1992 Phys. Fluids B 4 2315
[2] Stamper J A, Dawson J M, Papadopoulos K, Sudan R N Dean S O and Mclean E A 1971 Phys. Rev. Lett. 26 1012
[3] Wilks S C, Kruer W L, Tabak M and Langdon A B 1992 Phys. Rev. Lett. 69 1383
[4] Sudan R N 1993 Phys. Rev. Lett. 70 3075
[5] Mora P and Pellat R 1981 Phys. Fluids 24 2219
[6] Pukhov A and Meyer-ter-Vehn J 1996 Phys. Rev. Lett. 76 3975
[7] Stamper J A, McLean E A and Ripin B H 1978 Phys. Rev. Lett. 40 1177
[8] Tatarakis M, Gopal A, Watts I, Beg F N, Dangor A E, Krushelnick K, Wagner U, Norreys P A, Clark E L, Zepf M and Evans R G 2002 Phys. Plasmas 9 2244
[9] Wagner U, Tatarakis M, Gopal A, Beg F N, Clark E L, Dangor A E, Evans R G, Haines M G, Mangles S P D, Norreys P A, Wei M S, Zepf M and Krushelnick K 2004 Phys. Rev. E 70 026401
[10] Kim A, Tushentsov M, Anderson D and Lisak M 2002 Phys. Rev. Lett. 89 095003
[11] Berezhiani V I, Mahajan S M and Shatashvili N L 1997 Phys. Rev. E 55 995
[12] Tripathi V K and Liu C S 1994 Phys. Plasmas 1 990
[13] Haines M G 1997 Phys. Rev. Lett. 78 254
[14] Borghesi M, MacKinnon A J, Bell A R, Gaillard R and Willi O 1998 Phys. Rev. Lett. 81 112
[15] Sheng Z M and Meyer-ter-Vehn J 1996 Phys. Rev. E 54 1833
[16] Bell A R, Davies J R and Guerin S M 1998 Phys. Rev. E 58 2471
[17] Mason R J and Tabak M 1998 Phys. Rev. Lett. 80 524
[18] Qiao B, Zhu S P, Zheng C Y and He X T 2005 Phys. Plasmas 12 053104
[19] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M and Perry M D 1994 Phys. Plasmas 1 1626
[20] Pukhov A and Meyer-ter-Vehn J 1996 Phys. Rev. Lett. 76 3975
[21] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[22] Goldreich P and Julian W H 1969 Astrophys. J. 157 869 endfootnotesize
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[6] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[7] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[8] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[9] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[10] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[11] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[12] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[13] Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection
Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良). Chin. Phys. B, 2023, 32(2): 024212.
[14] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[15] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
No Suggested Reading articles found!