Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 078101    DOI: 10.1088/1674-1056/19/7/078101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

Wang Zhi-Jun(王志军), Wang Jin-Cheng(王锦程), and Yang Gen-Cang(杨根仓)
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed.
Keywords:  phase field model      solidification      diffuse interface  
Received:  23 October 2009      Accepted manuscript online: 
PACS:  68.35.Fx (Diffusion; interface formation)  
  65.40.-b (Thermal properties of crystalline solids)  
  64.70.D- (Solid-liquid transitions)  
Fund: Project supported by the fund of the State Key Laboratory of Solidification Processing in NWPU, China (Grants Nos. 17-TZ-2007, 03-TP-2008, and 24-TZ-2009) and the Doctorate Foundation of Northwestern Polytechnical University.

Cite this article: 

Wang Zhi-Jun(王志军), Wang Jin-Cheng(王锦程), and Yang Gen-Cang(杨根仓) Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys 2010 Chin. Phys. B 19 078101

[1] Boettinger W J, Warren J A, Beckermann C and Karma A 2002 Ann. Rev. Mater. Res. 23 163
[2] Li J J, Wang J C and Yang G C 2008 Chin. Phys. B 17 3516
[3] Moelans N, Blanpain B and Wollants P 2008 CALPHAD 32 268
[4] Wang Z J, Wang J C and Yang G C 2010 Chin. Phys. B 19 017305
[5] Wang Z J, Wang J C and Yang G C 2009 Phys. Rev. E 80 052603
[6] Karma A and Rappel A J 1998 Phys. Rev. E 57 4323
[7] Karma A 2001 Phys. Rev. Lett. 87 115701
[8] Ramirez J C, Beckermann C, Karma A and Diepers H J 2004 Phys. Rev. E 69 051607
[9] Almgren R F 1999 J. Appl. Math. 59 2086
[10] Wheeler A A, Boettinger W J and McFadden G B 1992 Phys. Rev. A 45 7424
[11] Kim S G, Kim W T and Suzuki T 1998 Phys. Rev. E 58 3316
[12] Qin R S and Wallach E R 2003 Acta Mater. 51 6199
[13] Kim S G, Kim W T, Suzuki T and Ode M 2004 J. Cryst. Growth 261135
[14] Ramirez J C and Beckermann C 2003 41st AIAA Aerospace Sciences Meeting and Exhibit AIAA 2003-816
[15] Hillert M and Rettenmayr M 2003 Acta Mater. 51 2803 endfootnotesize
[1] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[2] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[3] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[4] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[5] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[6] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[7] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[8] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[9] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[10] High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review
Tie Liu(刘铁), Qiang Wang(王强), Yi Yuan(苑轶), Kai Wang(王凯), Guojian Li(李国建). Chin. Phys. B, 2018, 27(11): 118103.
[11] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[12] Tip-splitting instability in directional solidification based on bias field method
You Jia-Xue (游家学), Wang Zhi-Jun (王志军), Li Jun-Jie (李俊杰), Wang Jin-Cheng (王锦程). Chin. Phys. B, 2015, 24(7): 078107.
[13] Structural origin underlying the effect of cooling rate on solidification point
Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国). Chin. Phys. B, 2015, 24(11): 116101.
[14] Dendrite to symmetry-broken dendrite transition in directional solidification of non-axially oriented crystals
Xing Hui (邢辉), Wang Jian-Yuan (王建元), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Du Li-Fei (杜立飞). Chin. Phys. B, 2014, 23(3): 038104.
[15] Orientation-dependent morphological stability of grain boundary groove
Wang Li-Lin (王理林), Lin Xin (林鑫), Wang Zhi-Jun (王志军), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2014, 23(12): 124702.
No Suggested Reading articles found!