Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077804    DOI: 10.1088/1674-1056/19/7/077804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor

Wei Xian-Tao(韦先涛), Zhao Jiang-Bo(赵江波), Chen Yong-Hu(陈永虎), Yin Min(尹民), and Li Yong(李勇)
Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Bi3+ and Yb3+ codoped cubic Y2O3 phosphors are prepared by pechini sol—gel method. Strong near-infrared (NIR) emission around 980 nm from Yb3 + (2F5 / 2 2F7 / 2) is observed under ultraviolet light excitation. A broad excitation band ranging from 320 to 360 nm, owing to the 6s2 6s6p transition of Bi3 + ions, is recorded when the Yb3 + emission is monitored, which suggests a very efficient energy transfer from Bi3 + ions to Yb3 + ions. The Yb3 + concentration dependences of both the Bi3 + and the Yb3 + emissions are investigated. The decay curve of Bi3 + emission under the excitation of 355 nm pulse laser is used to explore the Bi3 + → Yb3 + energy transfer process. Cooperative energy transfer (CET) is discussed as a possible mechanism for the near-infrared emission.
Keywords:  downconversion      cooperative energy transfer      photoluminescence  
Accepted manuscript online: 
PACS:  78.55.Hx (Other solid inorganic materials)  
  81.20.Fw (Sol-gel processing, precipitation)  
Fund: Project supported by the National Nature Science Foundation of China (Grant No. 10774140), the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-M11), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20060358054), and the Special Foundation for Talents of Anhui Province, China (Grant No. 2007Z021).

Cite this article: 

Wei Xian-Tao(韦先涛), Zhao Jiang-Bo(赵江波), Chen Yong-Hu(陈永虎), Yin Min(尹民), and Li Yong(李勇) Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor 2010 Chin. Phys. B 19 077804

[1] Vergeer P, Vlugt T J H, Kox M H F, den Hertog M I, van der Eerden J P J M and Meijerink A 2005 Phys. Rev. B 71 014119
[2] Yuan J L, Zeng X Y, Zhao J T, Zhang Z J, Chen H H and Yang X X 2008 J. Phys. D: Appl. Phys. 41 105406
[3] Zhang Q Y, Yang C H and Jiang Z H 2007 Appl. Phys. Lett. 90 061914
[4] Zhang Q Y and Yang C H 2007 Appl. Phys. Lett. 90 021107
[5] Xie L C, Wang Y H and Zhang H J 2009 Appl. Phys. Lett. 94 061905
[6] Ye S, Zhu B, Chen J X, Luo J and Qiu J R 2008 Appl. Phys. Lett. 92 141112
[7] Chen D Q, Wang Y S, Yu Y L, Huang P and Weng F Y 2008 Opt. Lett. 33 1884
[8] Chen D Q, Wang Y S, Yu Y L, Huang P and Weng F Y 2008 J. Appl. Phys. 104 116105
[9] Richards B S 2006 Sol. Energy Mater. Sol. Cells 90 2329
[10] Jin X, Zhang X D, Lei Z F, Xiong S Z, Song F and Zhao Y 2008 Acta Phys. Sin. 57 4580 (in Chinese)
[11] Blasse G and Grabmaier B C 1994 Luminescent Materials (Berlin: Springer)
[12] Verweij J W M, Pedrini C, Bouttet D, Dujardin C, Lautesse H and Moine B 1995 Opt. Mater. 4 575
[13] Rivas-Silva J F, Durand-Niconoff S, Schmidt T M and Berrondo M 2000 Int. J. Quantum Chem. 79 198
[14] Vergeer P, Babin V and Meijerink A 2005 J. Lumin. 114 267
[15] Jacobsohn L G, Blair M W, Tornga S C, Brown L O, Bennett B L and Muenchausen R E 2008 J. Appl. Phys. 104 124303
[16] Chi L S, Liu R S and Lee B J 2005 J. Electrochem. Society 152 8
[17] Xu Q H, Lin B C and Mao Y L 2005 J. Lumin. 128 1965
[18] Huang P, Cui C and Wang S 2009 Chin. Phys. B 18 4524
[19] Boulon G 1971 J. Phys. (Paris) 32 333
[20] van Pieterson L, Heeroma M, de Heer E and Meijerink A 2000 J. Lumin. 91 177 endfootnotesize
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!