Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077101    DOI: 10.1088/1674-1056/19/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band structure and absorption coefficient in GaN/AlGaN quantum wires

Yao Wen-Jie(姚文杰), Yu Zhong-Yuan(俞重远), and Liu Yu-Min(刘玉敏)
Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The band structures of rectangular GaN/AlGaN quantum wires are modeled by using a parabolic effective-mass theory. The absorption coefficients are calculated in a contact-density matrix approach based on the band structure. The results obtained indicate that the peak absorption coefficients augment with the increase of the injected carrier density, and the optical gain caused by interband transition is polarization anisotropic. For the photon energy near 1.55 eV, we can obtain relatively large peak gain. The calculations support the previous results published in the recent literature.
Keywords:  absorption coefficient      gain      polarization anisotropic      quantum wires  
Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  78.67.Lt (Quantum wires)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  73.63.Nm (Quantum wires)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405), and the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068 and 60644004).

Cite this article: 

Yao Wen-Jie(姚文杰), Yu Zhong-Yuan(俞重远), and Liu Yu-Min(刘玉敏) Band structure and absorption coefficient in GaN/AlGaN quantum wires 2010 Chin. Phys. B 19 077101

[1] Crnjanski J V and Gvozdic D M 2007 J. Appl. Phys. 101 013104
[2] Takahashi Y, Hayamizu Y, Itoh H, Yoshita M and Akiyama H 2005 Appl. Phys. Lett. 87 223119
[3] Liu Y M, Yu Z Y and Huang Y Z 2007 J. Univ. Sci. Technol. B 14 477
[4] Liu Y M, Yu Z Y and Ren X M 2007 Chin. Phys. Lett. 25 1850
[5] Alizon R, Hadass D, Mikhelashvili V, Einsenstein G, Schwertberger R, Somers A, Reithmaier J P, Forchel A, Calligaro M, Bansropun S and Krakowski M 2004 Electron. Lett. 40 760
[6] Ginzburg P and Orenstein M 2008 J. Appl. Phys. 103 083105
[7] Plumridge J R, Steed R J and Phillips C C 2008 Phys. Rev. B 77 205428
[8] Moret N, Oberli D Y, Dwir B, Rudra A, Gallo P and Kapon E 2008 Appl. Phys. Lett. 93 172107
[9] Cusack M A, Briddon P R and Jaros M 1996 Phys. Rev. B 54 R2300
[10] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2008 Chin. Phys. B 17 3471
[11] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 0881
[12] Gershoni D, Temkin H, Dolan G J, Dunsmuir J, Chu S N G and Panish M B 1998 Appl. Phys. Lett. 53 995
[13] Califano M and Harrison P 1999 J. Appl. Phys. 86 5054
[14] Yao W J, Yu Z Y, Liu Y M and Lu P F 2009 Acta Phys. Sin. 58 1185 (in Chinese)
[15] Schliwa A, Winkelnkemper M and Bimberg 2007 Phys. Rev. B 76 205324
[16] Xiang H J, Wei S H, Silva J L F D and Li J B 2008 Phys. Rev. B 78 193301 endfootnotesize
[1] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[2] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[3] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[4] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[5] Origin of anomalous enhancement of the absorption coefficient in a PN junction
Xiansheng Tang(唐先胜), Baoan Sun(孙保安), Chen Yue(岳琛), Xinxin Li(李欣欣), Junyang Zhang(张珺玚), Zhen Deng(邓震), Chunhua Du(杜春花), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Yang Jiang(江洋), Weihua Wang(汪卫华), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097804.
[6] Enhanced absorption process in the thin active region of GaAs based p-i-n structure
Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
[7] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[8] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[9] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[10] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[11] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[12] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[13] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[14] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[15] High-dimensional atomic microscopy in surface plasmon polaritons
Akhtar Munir, Abdul Wahab, and Munsif Jan. Chin. Phys. B, 2020, 29(12): 124204.
No Suggested Reading articles found!