Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 076201    DOI: 10.1088/1674-1056/19/7/076201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Characterisation of the high-pressure structural transition and elastic properties in boron arsenic

Lü Bing (吕兵)ab, Linghu Rong-Feng (令狐荣锋)ab, Yi Yong (易勇)c, Yang Xiang-Dong (杨向东)a
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China; c School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621900, China
Abstract  This paper carries out the First principles calculation of the crystal structures (zinc blende (B3) and rocksalt (B1)) and phase transition of boron arsenic (BAs) based on the density-functional theory. Using the relation between enthalpy and pressure, it finds that the transition phase from the B3 structural to the B1 structural occurs at the pressure of 113.42GPa. Then the elastic constants C11, C12, C44, bulk modulus, shear modulus, Young modulus, anisotropy factor, Kleinman parameter and Poisson ratio are discussed in detail for two polymorphs of BAs. The results of the structural parameters and elastic properties in B3 structure are in good agreement with the available theoretical and experimental values.
Keywords:  phase transition      elastic properties      generalised gradient approximation      boron arsenic  
Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  64.70.K-  
  61.66.Fn (Inorganic compounds)  
  65.40.G- (Other thermodynamical quantities)  
  62.20.D- (Elasticity)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974139 and 10964002), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20050610010), the Science-Technology Foundation of Guizhou Province of China (Grant Nos. [2009]2066 and [2009]06), the project of Aiding Elites' Research Condition of Guizhou Province of China (Grant No. TZJF-2008-42).

Cite this article: 

Lü Bing (吕兵), Linghu Rong-Feng (令狐荣锋), Yi Yong (易勇), Yang Xiang-Dong (杨向东) Characterisation of the high-pressure structural transition and elastic properties in boron arsenic 2010 Chin. Phys. B 19 076201

[1] Bouhafs B, Aourag H and Certier M 2000 J. Phys.: it Condens. Mat. 12 5655
[2] Lambrecht W R L and Segall B 1991 Phys. Rev. B 43 7070
[3] Zaoui A and Hassan F 2001 J. Phys.: Condens. Mat. 13 253
[4] Wentzcovitch R M and Cohen M L 1987 Phys. Rev. B 36 6058
[5] Cui S X, Feng W X, Feng Z and Wang Y 2009 it Comput. Mater. Sci. 44 1386
[6] Liu N N, Song R B and Du D W 2009 Chin. Phys. B 18 1979
[7] Wang C L, Yu B H, Huo H L, Chen D and Sun H B 2009 Chin. Phys. B 18 1248
[8] Zhu J, Yu J X, Wang Y J, Chen X R and Jing F Q 2008 Chin. Phys. B 17 2216
[9] Hao Y J, Cheng Y, Wang Y J and Chen X R 2007 Chin. Phys. 16 217
[10] Liu Z J, Qi J H, Guo Y, Chen Q F, Cai L C and Yang X D 2007 Chin. Phys. 16 499
[11] Herrera-Cabrera M J, Rodr'higuez-Hern'andez P and Mu noz A 2003 Int. J. Quantum Chem. 91 191
[12] Meradji H, Drablia S, Ghemid S, Belkhir H, Bouhafs B and Tadjer A 2004 Phys. Stat. Sol. B 241 2881
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[15] Teter D M 1998 MRS Bull. 23 22
[16] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
[17] Shimizu H and Sasaki S 1992 Science 257 514
[18] Ahmed R, Hashemifar S J, Akbarzadeh H and Ahmed M 2007 it Comput. Mater. Sci. 39 580
[19] Sin'ko G V and Smirnow N A 2002 J. Phys. Condens. Mat. 14 6989
[20] Pugh S F 1954 Phil. Mag. 45 823
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!