Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 073601    DOI: 10.1088/1674-1056/19/7/073601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Coalescence between Cu57 and Cu58 clusters at a room temperature: molecular dynamics simulations

Zhang Lin (张林)a, Li Wei (李蔚)a, Wang Shao-Qing (王绍青)b
a Institute of Materials Physics and Chemistry, College of Science, Northeastern University, Shenyang 110004, China; b Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  Three coalescence processes of Cu57—Cu57, Cu57—Cu58, and Cu58—Cu58 clusters at 300 K are investigated by employing molecular dynamics simulations. According to the evolutions of mean square displacement and local atom packing, the coalescence process can be separated into three stages including an approaching stage, a coalescing stage, and a coalesced stage. The simulations show that the coalescence processes and the formed products are sensitive to the respective initial structures of, and the relative configuration between, the two coalescing icosahedron—based clusters.
Keywords:  cluster      molecular dynamics      computer simulation      surface  
Received:  08 July 2009      Accepted manuscript online: 
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  61.66.Bi (Elemental solids)  
  68.35.Fx (Diffusion; interface formation)  
Fund: Project Supported by Special Foundation for State Major Basic Research Program of China (Grant No. G2006CB605103), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China and the Fundamental Research Funds for the Central University (Grant No. 90405001).

Cite this article: 

Zhang Lin (张林), Li Wei (李蔚), Wang Shao-Qing (王绍青) Coalescence between Cu57 and Cu58 clusters at a room temperature: molecular dynamics simulations 2010 Chin. Phys. B 19 073601

[1] Beck T L, Jellinek J and Berry R S 1987 wxJ. Chem. Phys.87 545
[2] Ercolessi F, Andreoni W and Tosatti E 1991 wxPhys. Rev. Lett.66 911
[3] Sebetci A and Guvenc Z B 2004 wxModelling Simul. Mater. Sci. Eng.12 1131
[4] Zhang Z, Hu W Y and Xiao S F 2006 wxPhys. Rev. B73 125443
[5] Liu H B, Ascencio J A, Alvarez M P and Yacaman M J 2001 wxSurf. Sci.491 88
[6] Chushak Y G and Bartell L S 2001 wxJ. Phys. Chem. B105 11605
[7] Yildirim E K and Guvencc Z B 2006 wxModelling Simul. Mater. Sci. Eng.14 947
[8] Wen Y H, Zhang Y, Zhu Z Z and Sun S G 2008 wxActa Phys. Sin.58 2585 (in Chinese)
[9] Lei X L, Wang X M, Zhu H J and Luo Y H 2009 wxChin. Phys. B18 2264
[10] Wang H Y, Li X B, Tang Y J, King R B and Schaefer III H F 2007 wxChin. Phys.16 1660
[11] Feng C J, Xue Y H, Zhang X Y and Zhang X C 2009 wxChin. Phys. B18 1436
[12] Li Z J and Li J H 2008 wxChin. Phys. B17 2951
[13] Mao H P, Wang H Y and Sheng Y 2008 wxChin. Phys. B17 2110
[14] Yang P, Ge J H and Jiang Z Y 2007 wxChin. Phys.16 1014
[15] Dai Y, Dai D, Huang B and Yan C 2005 wxEur. Phys. J. D34 105
[16] Zhang L, Zhang C B and Qi Y 2008 wxPhys. Lett. A372 2874
[17] Xu S N, Zhang L, Qi Y and Zhang C B 2010 wxPhysica B405 632
[18] Rosu M F, Pleiter F and Niesen L 2001 wxPhys. Rev. B63 165425
[19] Jacob T, Anton J, Sarpe-Tudoran C, Sepp W D, Fricke B and Bastu'g T 2003 wxSurf. Sci.536 45
[20] Zhang L and Sun H X 2009 wxSolid State Commun.149 1722
[21] Zhang L, Xu S N, Zhang C B and Qi Y 2009 wxComput. Mater. Sci.47 162
[22] Zhang L, Zhang C B and Qi Y 2009 wxPhysica B404 205
[23] Boisvert G and Lewis L J 1997 wxPhys. Rev. B56 7643
[24] Hawa T and Zachariah M R 2005 wxPhys. Rev. B71 165434
[25] Hawa T and Zachariah M R 2006 wxJ. Aerosol Sci.37 1
[26] Yadha V and Helble J J 2004 wxJ. Aerosol Sci.35 665
[27] Zhao L Y and Choi P 2004 wxJ. Chem. Phys.120 1935
[28] Yukna J and Wang L C 2007 wxJ. Phys. Chem. C111 13337
[29] Zhang L and Sun H X 2009 wxChin. J. Chem. Phys.22 69
[30] Mei J, Davenport J W and Fernado G W 1991 wxPhys. Rev. B43 4653
[31] Honeycutt J D and Andersen H C 1987 wxJ. Phys. Chem.91 4950
[32] Clarke A S and Jonsson H 1993 wxPhys. Rev. E47 3975
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[7] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[8] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[9] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[10] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[11] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[12] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[13] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[14] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[15] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
No Suggested Reading articles found!