Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 070515    DOI: 10.1088/1674-1056/19/7/070515
GENERAL Prev   Next  

Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

Li Guang-Hui (李光辉), Wang An-Bang (王安帮), Feng Ye (冯野), Wang Yang (汪洋)
Physics Department, College of Science, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.
Keywords:  synchronization      bidirectional communication      without delay line      semiconductor laser  
Received:  12 November 2009      Accepted manuscript online: 
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60577019 and 60777041) and the International Cooperation Project of Shanxi Province, China (Grant No. 2007081019).

Cite this article: 

Li Guang-Hui (李光辉), Wang An-Bang (王安帮), Feng Ye (冯野), Wang Yang (汪洋) Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers 2010 Chin. Phys. B 19 070515

[1] Fischer I, Liu Y and Davis P 2000 Phys. Rev. A 62 011801
[2] Liu J M, Chen H F and Tang S 2002 IEEE J. Quantum Electron. 38 1184
[3] Lee M W and Shore K A 2006 IEEE Photon. Technol. Lett. 18 169
[4] van Wiggeren G D and Roy R 1998 Science 279 1198
[5] Mirasso C R, Kolesik M, Matus M, White J K and Moloney J 2002 Phys. Rev. A 65 013805
[6] Zhang J Z, Wang A B and Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese)
[7] Wu L and Zhu S Q 2003 Phys. Lett. A 308 157
[8] Zhang J Z, Wang A B, Wang J F and Wang Y C 2009 Opt. Express 17 6357
[9] Zhou Y, Wu L and Zhu S Q 2005 Chin. Phys. 14 2196
[10] Yang L Z, Zhang X J, Wang A B, Guo D M and Wang Y C 2008 Chin. Phys. Lett. 25 3883
[11] Sang X Z, Yu C X and Wang K R 2006 Acta Phys. Sin. 55 5728 (in Chinese)
[12] Zhang S H and Shen K 2002 Chin. Phys. 11 894
[13] Chen J F, Zhang R Y and Peng J H 2003 Acta Phys. Sin. 52 1589 (in Chinese)
[14] Yan S L 2007 Chin. Phys. 16 3271
[15] Liu H J and Feng J C 2009 Acta Phys. Sin. 58 1484 (in Chinese)
[16] Lu J G and Xi Y G 2005 Chin. Phys. 14 274
[17] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garc'a-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[18] Wang A B, Wang Y C and He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[19] Wang A B, Wang Y C and Wang J F 2009 Opt. Lett. 34 1144
[20] Zhao Y F 2009 Acta Phys. Sin. 58 6058 (in Chinese)
[21] Rochette M, Kutz J N, Blows J L, Moss D, Mok J T and Eggleton B J 2005 IEEE Photon. Technol. Lett. bf 17 908
[22] Bogris A, Chlouverakis K E, Argyris A and Syvridis D 2007 Opt. Lett. 32 2134
[23] Heil T, Fischer I, Els"asser W, Mulet J and Mirasso C R 2001 Phys. Rev. Lett. 86 795
[24] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y and Zhou Z 2008 Opt. Lett. 33 237
[25] Klein E, Gross N, Rosenbluh M, Kinzel W, Khaykovich L and Kanter I 2006 Phys. Rev. E 73 066214
[26] Fischer I, Vicente R, Buldu' J M, Peil M, Mirasso C R and Torrent M C 2006 Phys. Rev. Lett. 97 123902
[27] Vicente R and Mirasso C R 2007 Opt. Lett. 32 403
[28] Tang S and Liu J M 2001 Opt. Lett. 26 596
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[6] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[7] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[8] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[9] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[10] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[11] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[12] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[13] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[14] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[15] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
No Suggested Reading articles found!