Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 070505    DOI: 10.1088/1674-1056/19/7/070505
GENERAL Prev   Next  

Characterisation of the plasma density with two artificial neural network models

Wang Teng (王腾)ab, Gao Xiang-Dong (高向东)a, Li Wei (李炜)c
a Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510090, China; b School of Computer, South China Normal University, Guangzhou 510631, China; c School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  This paper establishes two artificial neural network models by using a multi layer perceptron algorithm and radial based function algorithm in order to predict the plasma density in a plasma system. In this model, the input layer is composed of five neurons: the radial position, the axial position, the gas pressure, the microwave power and the magnet coil current. The output layer is the target output neuron: the plasma density. The accuracy of prediction is tested with the experimental data obtained by the Langmuir probe. The effectiveness of two artificial neural network models are demonstrated, the results show good agreements with corresponding experimental data. The ability of the artificial neural network model to predict the plasma density accurately in an electron cyclotron resonance-plasma enhanced chemical vapour deposition system can be concluded, and the radial based function is more suitable than the multi layer perceptron in this work.
Keywords:  plasma density      prediction      multi layer perceptron      radial based function  
Received:  25 April 2009      Revised:  04 August 2009      Accepted manuscript online: 
PACS:  52.25.Jm (Ionization of plasmas)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  52.70.Ds (Electric and magnetic measurements)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60375012).

Cite this article: 

Wang Teng (王腾), Gao Xiang-Dong (高向东), Li Wei (李炜) Characterisation of the plasma density with two artificial neural network models 2010 Chin. Phys. B 19 070505

[1] Toader E I 2004 Plasma Sources Sci. Technol. bf 13 646
[2] Chen J F and Ren Z X 1999 Vacuum 52 411
[3] Mayuko K and Hiroshi M 2006 Vacuum 80 771
[4] Jin X Y, Qiu X J and Zhu Z Y 2006 Acta Phys. Sin. 55 5338 (in Chinese)
[5] Wang L, Cao J X, Wang Y, Niu T Y, Wang G and Zhu Y 2007 it Acta Phys. Sin. 56 1429 (in Chinese)
[6] Hiroshi M, Doan H T and Yoshinobu K 2005 Surf. Coat. Technol. 200 850
[7] Musil J 1996 Vacuum 47 145
[8] Wang Y S, Sun J, Wang C J and Fan H D 2008 Acta Phys. Sin. 57 6120 (in Chinese)
[9] Wang H, Wang A K, Yang Q W, Ding X T, Dong J Q, Sanuki H and Itoh K 2007 Chin. Phys. 16 3738
[10] Du X L, Chen G C, Jiang D Y, Yao X Z and Zhu H S 1999 Acta Phys. Sin. 48 257 (in Chinese)
[11] Dorteoust, Wu H M and Graves D B 1994 Plasma Sources Sci. Technol. 3 25
[12] Lungu C P and Iwasak K 2002 Vacuum 66 197
[13] Wu H M, Graves D B and Porteos R K 1995 Plasma Sources Sci. Technol. 4 22
[14] Sterjovski Z and Nolan D 2006 J. Mater. Proc. Technol. 170 536
[15] Xu L J and Xing J D 2007 Mater. Des. 28 1425
[16] Bezerra E M and Ancelotti A C 2007 Mater. Sci. Eng. A 464 177
[17] Scott D J and Coveney P V 2007 J. Eur. Cerma. Soc. bf 27 4425
[18] Ming D J, Chyuan D L and Wang J T 2005 Appl. Surf. Sci. 245 290
[19] Zhang G and Guessasma S 2006 Surf. Coat. Technol. bf 200 2610
[20] Hakan C and Hasan O 2006 Wear 261 064
[21] Pankaj S and Deo M C 2007 Applied Soft Computing 7 968
[1] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[2] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[3] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[4] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[5] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[6] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[7] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[8] Improving RNA secondary structure prediction using direct coupling analysis
Xiaoling He(何小玲), Jun Wang(王军), Jian Wang(王剑), Yi Xiao(肖奕). Chin. Phys. B, 2020, 29(7): 078702.
[9] Methods and applications of RNA contact prediction
Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)†. Chin. Phys. B, 2020, 29(10): 108708.
[10] Review of multimer protein–protein interaction complex topology and structure prediction
Daiwen Sun(孙黛雯), Shijie Liu(刘世婕), and Xinqi Gong(龚新奇)†. Chin. Phys. B, 2020, 29(10): 108707.
[11] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[12] Cluster structure prediction via CALYPSO method
Yonghong Tian(田永红), Weiguo Sun(孙伟国), Bole Chen(陈伯乐), Yuanyuan Jin(金圆圆), Cheng Lu(卢成). Chin. Phys. B, 2019, 28(10): 103104.
[13] Discovery of superhard materials via CALYPSO methodology
Shuangshuang Zhang(张爽爽), Julong He(何巨龙), Zhisheng Zhao(赵智胜), Dongli Yu(于栋利), Yongjun Tian(田永君). Chin. Phys. B, 2019, 28(10): 106104.
[14] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[15] Pressure-induced new chemistry
Jianyan Lin(蔺健妍), Xin Du(杜鑫), Guochun Yang(杨国春). Chin. Phys. B, 2019, 28(10): 106106.
No Suggested Reading articles found!