Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 064211    DOI: 10.1088/1674-1056/19/6/064211
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Relative carrier-envelope phase dependence of resonant propagation of two-colour femtosecond pulses in V-type atomic medium

Tan Xia(谭霞)a)b), Wang Zhen-Dong(王振东) a), Wang Lei(王蕾)a), and Fan Xi-Jun(樊锡君)a)†
a College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; b College of Physics and Electronics, Weifang University, Weifang 261061, China
Abstract  Using numerical solution of the full Maxwell--Bloch equations, which is obtained by the finite-difference time-domain method and the iterative predictor--corrector method, we investigate the modulation effect of relative carrier--envelope phase (hereinafter referred to as the relative phase) on resonant propagation of two-colour femtosecond ultrashort laser pulses in a V-type three-level atomic medium. It is found that the pulse splitting occurs for a smaller value of relative phase; when the value of relative phase increases to a certain value, only the variation of pulse shape is present and the pulse splitting does not occur any more; moreover, when the value of relative phase is smaller, the pulse group velocity is larger. The relative phase also has an obvious effect on population and spectral property. Different population transfers can be realized by adjusting the value of relative phase. Generally speaking, for the pulses with smaller areas their spectral strengths and frequency ranges decrease obviously with the value of relative phase increasing; for the pulses with larger areas, with value of the relative phase increasing, their spectral strengths decrease remarkably but the relative strengths of the higher frequency components increase significantly, while the spectral frequency range is not varied evidently.
Keywords:  two-colour ultrashort pulses      relative carrier--envelope phase      resonant propagation      V-type three-level atomic medium  
Received:  06 July 2009      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  32.80.-t (Photoionization and excitation)  
  02.70.Bf (Finite-difference methods)  

Cite this article: 

Tan Xia(谭霞), Wang Zhen-Dong(王振东), Wang Lei(王蕾), and Fan Xi-Jun(樊锡君) Relative carrier-envelope phase dependence of resonant propagation of two-colour femtosecond pulses in V-type atomic medium 2010 Chin. Phys. B 19 064211

[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Agostini P and DiMauro L 2004 Rep. Prog. Phys. 67 813
[3] Winterfeldt C, Spielmann C and Gerber G 2008 Rev. Mod. Phys. 80 117
[4] Feng Z H, Fu X Q, Zhang L F, Xu H W and Wen S C 2008 Acta Phys. Sin. 57 2253 (in Chinese)
[5] Hu Q L, Liu S B and Li W 2008 Chin. Phys. B 17 1050
[6] Peng Y J, Liu Y Q, Wang Y H, Zhang S P and Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese)
[7] Lu D Q, Hu W, Qian L J and Fan D Y 2009 Acta Phys. Sin. 58 1655 (in Chinese)
[8] Sun Y P, Liu J C and Wang C K 2009 Acta Phys. Sin. 58 3934 (in Chinese)
[9] Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y and Xu Z Z 2009 Phys. Rev. Lett. 103 093001
[10] Li L S, Feng G Y, Yang J, Zhou G R, Zhou H, Zhu Q H, Wang J J and Zhou S H 2009 Acta Phys. Sin. 58 7005 (in Chinese)
[11] Yang W F, Song X H, Gong S Q, Cheng Y and Xu Z Z 2007 Phys. Rev. Lett. 99 133602
[12] Zuo T and Bandrauk A D 1996 Phys. Rev. A 54 3254
[13] Song X H, Gong S Q, Jin S Q and Xu Z Z 2003 Phys. Lett. A 319 150
[14] Brown A and Meath W J 2002 Phys. Rev. A 65 063401
[15] Avetissian H K, Avchyan B R and Mkrtchian G F 2006 Phys. Rev. A 74 063413
[16] Xia K Y, Niu Y P, Li C F and Gong S Q 2007 Phys. Lett. A 361 173
[17] Song X H, Gong S Q, Jin S Q and Xu Z Z 2004 Phys. Rev. A 69 015801
[18] Zhang C L, Qi Y Y and Liu X S 2007 Acta Phys. Sin. 56 774 (in Chinese)
[19] Liu C P, Gong S Q, Li R X and Xu Z Z 2004 Phys. Rev. A 69 023406
[20] Zuo T and Bandrauk A D 1995 Phys. Rev. A 51 3991
[21] Serrat C 2005 Phys. Rev. A 72 023808
[22] Serrat C 2005 Phys. Rev. A 72 051803
[23] Loiko Y and Serrat C 2006 Phys. Rev. A 73 063809
[24] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[25] Ziolkowski R W, Arnold J M and Gogny D M 1995 Phys. Rev. A 52 3082
[26] McCall S L and Hahn E L 1967 Phys. Rev. Lett. 18 908
[27] Lamb Jr G L 1971 Rev. Mod. Phys. 43 99
[28] Engelen R J P, Sugimot Y, Watanabe Y, Korterik J P, Ikeda N, van Hulst N F, Asakawa K and Kuipers L 2006 Opt. Express 14 1658
[29] Tarasishin A V, Magnitskii S A, Shuaev V A and Zheltikov A 2001 Opt. Express 8 452
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[4] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[5] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[6] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[7] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[8] Yield enhancement of elliptical high harmonics driven by bicircular laser pulses
Xiaofan Zhang(张晓凡) and Xiaosong Zhu(祝晓松). Chin. Phys. B, 2022, 31(11): 114209.
[9] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[10] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[11] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[12] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[13] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[14] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[15] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
No Suggested Reading articles found!