Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060511    DOI: 10.1088/1674-1056/19/6/060511
GENERAL Prev   Next  

Chaotic behaviours and control of chaos in the p-Ge photoconductor

Feng Yu-Ling(冯玉玲), Zhang Xi-He(张喜和), and Yao Zhi-Hai(姚治海)
Department of Physics, Changchun University of Science and Technology, Changchun 130022, China
Abstract  The chaotic behaviours in the p--Ge photoconductor system are studied by changing the photo-excitation coefficient and the routes and parameter conditions are given for chaos generation in this system. A scheme for controlling chaos in the p--Ge photoconductor is presented by adding an ac bias current. Numerical simulations show that this scheme can be effectively used to control chaotic states into stable period states for this system. Moreover, the different period states with different period numbers can be obtained by appropriately adjusting the amplitude, frequency, and initial phase of the additional ac current.
Keywords:  chaotic behaviours      chaos control      p--Ge photoconductor  
Received:  30 December 2009      Accepted manuscript online: 
PACS:  72.40.+w (Photoconduction and photovoltaic effects)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by Scientific and Technological Development Plan Program of Jilin Province, China (Grant No.~20090309).

Cite this article: 

Feng Yu-Ling(冯玉玲), Zhang Xi-He(张喜和), and Yao Zhi-Hai(姚治海) Chaotic behaviours and control of chaos in the p-Ge photoconductor 2010 Chin. Phys. B 19 060511

[1] Teitsworth S W, Westervelt R M and Haller E E 1983 Phys. Rev. Lett . 51 825
[2] Teitsworth S W and Westervelt R M 1984 Phys. Rev. Lett . 53 2587
[3] Westervelt R M and Teitsworth S W 1985 J. Appl. Phys. 57 5457
[4] Westervelt R M and Teitsworth S W 1986 Physica D 23 187
[5] Gwinn E G and Westervelt R M 1986 Phys. Rev. Lett . 57 1060
[6] Teitsworth S W 1989 Appl. Phys. A 48 127
[7] Shiau Y H and Cheng Y C 1995 Phys. Rev. B 52 1698
[8] Shiau Y H and Cheng Y C 1997 Phys. Rev. B 56 9247
[9] Tzeng S T and Cheng Y C 2003 Phys. Rev. B 68 035211-1
[10] Tzeng S T and Tzeng Y 2005 Phys. Rev. B 72 205201-1
[11] Kyritsi K G, Gallos L, Anagnostopoulos A N, Cenys A and Bleris G L 1999 Nonlinear Phenomena in Complex Syst. 2 41
[12] Papazoglou E N, Kyritsi K G, Anagnostopoulos A N and Antoniou I 2002 Chaos, Solitons and Fractals 13 989
[13] Feng Y L and Zhang X H 2009 Chin. Phys. B 18 5212
[14] Gao J H, Xie L L and Peng J H 2009 Acta Phys. Sin. 58 5218 (in Chinese)
[15] Li C L 2009 Acta Phys. Sin. 58 8134 (in Chinese)
[16] Sun C W 2002 Laser Radiation Effects (Beijing: National Defence Industry Press) pp.~391--394 (in Chinese)
[17] Sprott J C 1997 Phys. Lett. A 228 271
[18] Chacon R and Bejarano J D 1993 Phys. Rev. Lett . 71 3103
[19] Braiman Y and Goldhirsch I 1991 Phys. Rev. Lett . 66 2545
[20] Hu G, Xiao J H and Zheng Z G 2000 Chaos Control (Shanghai: Shanghai Scientific and Technological Education Press) pp.~63, 64 (in Chinese)
[1] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[2] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[3] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[4] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[5] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
[6] Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin Jiu-Li (殷久利), Zhao Liu-Wei (赵刘威), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(2): 020204.
[7] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
[8] Chaos detection and control in a typical power system
Hossein Gholizadeh, Amir Hassannia, Azita Azarfar. Chin. Phys. B, 2013, 22(1): 010503.
[9] Control of fractional chaotic system based on fractional-order resistor–capacitor filter
Zhang Lu (张路), Deng Ke (邓科), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2012, 21(9): 090505.
[10] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
[11] Cascade adaptive control of uncertain unified chaotic systems
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2011, 20(4): 040510.
[12] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
[13] No-chattering sliding mode control in a class of fractional-order chaotic systems
Chen Di-Yi(陈帝伊), Liu Yu-Xiao(刘玉晓), Ma Xiao-Yi(马孝义), and Zhang Run-Fan(张润凡) . Chin. Phys. B, 2011, 20(12): 120506.
[14] Adaptive stabilization of an incommensurate fractional order chaotic system via a single state controller
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping (杨世平) . Chin. Phys. B, 2011, 20(11): 110506.
[15] Fuzzy modeling and impulsive control of hyperchaotic Lü system
Zhang Xiao-Hong(张小洪) and Li Dong(李东). Chin. Phys. B, 2009, 18(5): 1774-1779.
No Suggested Reading articles found!