Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060510    DOI: 10.1088/1674-1056/19/6/060510
GENERAL Prev   Next  

Determination of the exact range of the value of the parameter corresponding to chaos based on the Silnikov criterion

Li Wei-Yi(李伟义), Zhang Qi-Chang(张琪昌), and Wang Wei(王炜)
Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China and State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
Abstract  Based on the Silnikov criterion, this paper studies a chaotic system of cubic polynomial ordinary differential equations in three dimensions. Using the Cardano formula, it obtains the exact range of the value of the parameter corresponding to chaos by means of the centre manifold theory and the method of multiple scales combined with Floque theory. By calculating the manifold near the equilibrium point, the series expression of the homoclinic orbit is also obtained. The space trajectory and Lyapunov exponent are investigated via numerical simulation, which shows that there is a route to chaos through period-doubling bifurcation and that chaotic attractors exist in the system. The results obtained here mean that chaos occurred in the exact range given in this paper. Numerical simulations also verify the analytical results.
Keywords:  Silnikov criterion      chaos      homoclinic orbit      period-doubling bifurcation  
Received:  28 July 2009      Accepted manuscript online: 
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.30.Oz (Bifurcation theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10872141) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20060056005).

Cite this article: 

Li Wei-Yi(李伟义), Zhang Qi-Chang(张琪昌), and Wang Wei(王炜) Determination of the exact range of the value of the parameter corresponding to chaos based on the Silnikov criterion 2010 Chin. Phys. B 19 060510

[1] Hu J B, Han Y and Zhao L D 2008 Acta Phys. Sin. 57 7522 (in Chinese)
[2] Lü L, Li G and Chai Y 2008 Acta Phys. Sin. 57 7517 (in Chinese)
[3] Yang C Y and Tang G N 2009 Acta Phys. Sin. 58 143 (in Chinese)
[4] Zhang Q C, Wang W and Liu F H 2008 Chin. Phys. B 17 4123
[5] Liu Z C 2009 Chin. Phys. B 18 636
[6] Zhang C X and Yu S M 2009 Acta Phys. Sin. 58 120 (in Chinese)
[7] Sprott J C 1994 Phys. Rev. E 50 R647
[8] Sprott J C 2000 Am. J. Phys. 68 858
[9] Sprott J C 2000 Phys. Lett. A 266 19
[10] Xu P C and Jing Z J 2000 Chaos, Solitons and Fractals 11 853
[11] Tian S Z, Chen G R and Yang Q G 2004 Chaos, Solitons and Fractals 19 985
[12] Zhu S Q, Yang M, Zhang X H and Min L Q 2005 J. Univ. Sci. Technol. Beijing 27 635 (in Chinese)
[13] Zhang Q C, Tian R L and Wang W 2008 Acta Phys. Sin 57 2799 (in Chinese)
[14] Rand R H 1989 Mech. Res. Commun. 16 11
[15] Nayfeh A H and Balachandran B 1990 Mech. Res. Commun. 17 191
[16] Shilnikov L P 1965 Sov. Phys. Dokl. 6 163
[17] Chen Y S 1993 Bifurcation and Chaos Theory of Nonlinear Vibration Systems (Tianjin: Higher Education Press) p.~223 (in Chinese)
[18] Wang H L and Zhang Q C 2002 Theory and Application of the Nonlinear Dynamics (Tianjin: Tianjin Technology Press) p.~100 (in Chinese)
[19] Nayfeh A H and Mook D T 1979 Nonlinear Oscillations (New York: Wiley) p.~258
[20] Cui F S, Chew C H, Xu J X and Cai Y L 1997 Nonlinear Dynam . 12 251
[21] Li Y H and Zhu S M 2006 Nonlinear Dynam . 29 1155
[22] Chen Z M, Djidjeli K and Price W G 2006 Math. Appl. Comput . 174 982
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[13] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!