Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060502    DOI: 10.1088/1674-1056/19/6/060502
GENERAL Prev   Next  

Entropy-variation with resistance in a quantized RLC circuit derived by the generalized Hellmann-Feynman theorem

Fan Hong-Yi(范洪义)a), Xu Xue-Xiang(徐学翔)a)b), and Hu Li-Yun(胡利云)b)
a Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China; b College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  By virtue of the generalized Hellmann--Feynman theorem for the ensemble average, we obtain the internal energy and average energy consumed by the resistance R in a quantized resistance--inductance--capacitance (RLC) electric circuit. We also calculate the entropy-variation with R. The relation between entropy and R is also derived. By the use of figures we indeed see that the entropy increases with the increment of R.
Keywords:  entropy      RLC circuit      generalized Hellmann--Feynman theorem  
Received:  18 September 2009      Accepted manuscript online: 
PACS:  84.30.Bv (Circuit theory)  
  05.70.Ce (Thermodynamic functions and equations of state)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10775097 and 10874174), and the Research Foundation of the Education Department of Jiangxi Province of China (Grant No.~GJJ10097).

Cite this article: 

Fan Hong-Yi(范洪义), Xu Xue-Xiang(徐学翔), and Hu Li-Yun(胡利云) Entropy-variation with resistance in a quantized RLC circuit derived by the generalized Hellmann-Feynman theorem 2010 Chin. Phys. B 19 060502

[1] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley)
[2] Fan H Y and Liang X T 2000 Chin. Phys. Lett. 17 174
[3] Hellmann H 1937 Einfuehrung in die Quantenchemie (Deuticke: Leipzig)
[4] Feynmann R P 1939 Phys. Rev. 56 340
[5] Fan H Y and Chen B Z 1995 Phys. Lett. A {\bf203 95
[6 ] Fan H Y and Xu X X 2009 J. Math. Phys. {\bf50 063303
[7] Fan H Y, Xu X X and Hu L Y 2010 Mod. Phys. Lett. B 24 217
[8 ] Popov D 1998\ Int. J. Quantum Chem. 69 159
[9 ] Dhurba R 2007 Phys. Rev. A 75 032514
[10] Su J, Wang J S, Liang B L and Zhang X Y 2008 Acta Phys. Sin. 57 7216 (in Chinese)
[11] Stephen M B and Paul M R 1997 Methods in Theoretical Quantum Optics (Oxford: Clarendon Press)
[12] Orszag M 2000 Quantum Optics (Berlin: Springer-Verlag)
[13] Xu X L, Li H Q and Wang J S 2007 Chin. Phys. 16 2462
[14] Liu T K, Wang J S, Feng J and Zhan M S 2005 Chin. Phys. 14 536
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[4] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[5] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[6] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[7] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[8] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[9] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[10] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Information flow between stock markets: A Koopman decomposition approach
Semba Sherehe, Huiyun Wan(万慧云), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2022, 31(1): 018902.
[13] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[14] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[15] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
No Suggested Reading articles found!