Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060304    DOI: 10.1088/1674-1056/19/6/060304
GENERAL Prev   Next  

Entanglement and decoherence of coupled superconductor qubits in a non-Markovian environment

Ji Ying-Hua(嵇英华)a)b)† and Hu Ju-Ju(胡菊菊) a)c)
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Key Laboratory of Optoelectronic and Telecommunication of Jiangxi, Nanchang 330022, China; c School of Optical-Electrical Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  The sudden death of entanglement is investigated for the non-Markovian dynamic process of a pair of interacting flux qubits under a thermal bath. The results show that, for initially two-qubit entangled states, entanglement sudden death (ESD) always happens in the thermal reservoir, where its appearance strongly depends on the environment. In particular, ESD of the qubits occurs more easily for the non-Markovian process than for the Markovian one.
Keywords:  entanglement      coupled qubits      non-Markovian process      concurrence  
Received:  26 September 2009      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10864002).

Cite this article: 

Ji Ying-Hua(嵇英华) and Hu Ju-Ju(胡菊菊) Entanglement and decoherence of coupled superconductor qubits in a non-Markovian environment 2010 Chin. Phys. B 19 060304

[1] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature (London) 403 869
[2] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[3] Wang Z S, Kwek L C, Lai C H and Oh C H 2005 Euro. Phys. J. D 33 285
[4] Merzbacher E 1970 Quantum Mechanics (New York: John Wiley &Sons Inc.) Chap. 13 p.~276
[5] Jones J A, Mosca M and Hansen R H 1998 Nature (London) 393 344
[6] Yang C P and Han S 2006 Phys. Rev. A 73 032317
[7] Wang Z S, Wu C F, Feng X L, Kwek L C, Lai C H, Oh C H and Vedral V 2007 Phys. Rev. A 76 044303
[8] Wang Z S 2009 Phys. Rev. A 79 024304
[9] Wang Z S, Liou G Q and Ji Y H 2009 Phys. Rev . A 79 054301
[10] Chen Z Q, Wang J Q, Li X L, Ji Y H, Zhang B R, Jiang Y Y and Wang Z S 2009 Int. J. Theor. Phys. 48 2904
[11] Yan X B and Wang S J 2006 Acta Phys. Sin. 55 1591 (in Chinese)
[12] Bennett C H, Brassard G, Crepeau C, Josza R, Peres A and Wootters W K 1993 Phys. Rev. Lett . 70 1895
[13] Jiang D Y, Wu R, Li S S and Wang Z S 2009 Int. J. Theor. Phys . 48 2297
[14] Cai X H, Guo J R, Nie J J and Jia J P 2006 Chin. Phys. 15 488
[15] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett . 69 2881
[16] Ekert A K 1991 Phys. Rev. Lett . 67 661
[17] Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156
[18] Yu T and Eberly J H 2004 Phys. Rev. Lett . 93 140404
[19] Mintert F, Carvalho A R R, Kus M and Buchleitner A 2005 Phys. Rep . 415 207
[20] Yu T and Eberly J H 2009 Science 323 598
[21] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[22] Benatti F and Floreanini R 2006 J. Phys. A 39 2689
[23] Paz J P and Roncaglia A J 2008 Phys. Rev. Lett . 100 220401
[24] Abdel-Aty Mahmoud and Yu T 2009 J. Phys. B 41 235503
[25] Ficek Z and Tanas R 2008 Phys. Rev . A 77 054301
[26] Scala M, Militello B, Messina A, Piiol J and Maniscalco S 2007 Phys. Rev . A 75 013811
[27] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Suystems (New York: Oxford University Press)
[28] Leggett A J, Chakravarty S and Dorsey A T 1987 Rev. Mod. Phys. 59 1
[29] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev . A 80 012104
[30] Scala M, Militello B, Messina A, Piilo J and Suominen K A 2008 Phys. Rev. A 77 043827
[31] Yang C P and Han S 2006 Phys. Rev. A 74 044302
[32] Yu Y, Han S Y, Chu X, Chu S I and Wang Z 2002 Science 296 889
[33] Jones J A, Mosca M and Hansen R H 1998 Nature (London) 393 344
[34] Weiss U 1999 Quantum Dissipative Systems (Singapore: World Scientific)
[35] Burkard G, Koch R H and DiVincenzo D P 2004 Phys. Rev. A 69 064503
[36] Wang Z S, Kwek L C, Lai C H and Oh C H 2006 Europhys. Lett. 74 958
[37] Wang Z S, Wu C F, Feng X L, Kwek L C, Lai C H and Oh C H 2007 Phys. Rev. A 75 024102
[38] Wang Z S and Wu R S 2009 Int. J. Theor. Phys. 48 1859
[39] Wang Z S 2009 Int. J. Theor. Phys. 48 2353
[40] Bellomo B, Lo Franco R and Compagno G 2008 Phys. Rev. A 77 032342
[41] Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 quant-ph arXiv:0906.1796
[42] Wootters W K 1998 Phys. Rev. Lett . 80 2245
[43] Ikram M, Li F L and Suhail Zubairy M 2007 Phys. Rev . A 75 062336
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!