Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060203    DOI: 10.1088/1674-1056/19/6/060203
GENERAL Prev   Next  

Effects of average degree of network on an order-disorder transition in opinion dynamics

Feng Cun-Fang(冯存芳)a)b), Guan Jian-Yue(关剑月) a), Wu Zhi-Xi(吴枝喜)c), and Wang Ying-Hai(汪映海) a)†
a Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; b College of Science, Wuhan University of Science and Engineering, Wuhan 430073, China; c Department of Physics, Ume?, University, 90187 Ume?, Sweden
Abstract  We have investigated the influence of the average degree $\langle k \rangle$ of network on the location of an order--disorder transition in opinion dynamics. For this purpose, a variant of majority rule (VMR) model is applied to Watts--Strogatz (WS) small-world networks and Barabási--Albert (BA) scale-free networks which may describe some non-trivial properties of social systems. Using Monte Carlo simulations, we find that the order--disorder transition point of the VMR model is greatly affected by the average degree $\langle k \rangle$ of the networks; a larger value of $\langle k \rangle$ results in a more ordered state of the system. Comparing WS networks with BA networks, we find WS networks have better orderliness than BA networks when the average degree $\langle k \rangle$ is small. With the increase of $\langle k \rangle$, BA networks have a more ordered state. By implementing finite-size scaling analysis, we also obtain critical exponents $\beta/\nu$, $\gamma/\nu$ and $1/\nu$ for several values of average degree $\langle k \rangle$. Our results may be helpful to understand structural effects on order--disorder phase transition in the context of the majority rule model.
Keywords:  complex networks      majority rule  
Received:  19 September 2009      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies)  
  05.70.Jk (Critical point phenomena)  
  02.50.Ng (Distribution theory and Monte Carlo studies)  
  02.30.Oz (Bifurcation theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10775060).

Cite this article: 

Feng Cun-Fang(冯存芳), Guan Jian-Yue(关剑月), Wu Zhi-Xi(吴枝喜), and Wang Ying-Hai(汪映海) Effects of average degree of network on an order-disorder transition in opinion dynamics 2010 Chin. Phys. B 19 060203

[1] Galam S 1999 Physica A 274 132
[2] Sznajd-Weron K and Sznajd J 2000 Int. J. Mod. Phys. C 11 1157
[3] Liu M X and Ruan J 2009 Chin. Phys. B 18 2115
[4] Galam S 2003 Physica A 320 571
[5] Watts D J 2002 Proc. Nat. Acad. Sci. USA 99 5766
[6] Boguná M, Pastor-Satorras R and Vespignani A 2003 Phys. Rev. Lett. 90 028701
[7] Chen Z Q, Pei W D and Yuan Z Z 2008 Chin. Phys. B 17 373
[8] Dall' Asta L, Baronchelli A, Barrat A and Loreto V 2006 Europhys. Lett. 73 969
[9] Krapivsky P L and Redner S 2003 Phys. Rev. Lett. 90 238701
[10] Mobilia M and Redner S 2003 Phys. Rev. E 68 046106
[11] Helbing D, Farkas I and Vicsek T 2000 Nature (London) 407 487
[12] Galam S 2002 Eur. Phys. J. B 25 403
[13] Frachebourg L and Krapivsky P L 1996 Phys. Rev. E 53 R3009
[14] Lambiotte R 2007 Europhys. Lett. 78 68002
[15] Lambiotte R and Ausloos M 2007 J. Stat. Mech. 8 08026
[16] Guan J Y, Wu Z X and Wang Y H 2007 Phys. Rev. E 76 042102
[17] Campos P R, Oliveira V M and Moreira F G B 2003 Phys. Rev. E 67 026104
[18] Lima F W S, Fulco U L and Costa Filho R N 2005 Phys. Rev. E 71 036105
[19] Pereira L F C and Brady Moreira F G 2005 Phys. Rev. E 71 016123
[20] Lima F W S arxiv:physics/0511082v1
[21] Lima F W S arxiv:cond-mat/0607582v1
[22] Barabá si A L and Albert R 1999 Science 286 509
[23] Feng W W 2009 Acta Phys. Sin. 58 2127 (in Chinese)
[24] Liu M X and Ruan J 2009 Chin. Phys. B 18 5111
[25] Girvan M and Newman M E J 2002 Proc. Nat. Acad. Sci. USA 99 7821
[26] Feng C F, Xu X J, Wu Z X and Wang Y H 2008 Chin. Phys. B 17 1951
[27] Watts D J and Strogatz S H 1998 Nature 393 440
[28] Binder K 1981 Z. Phys. B 43 119
[29] Oliveira M J de 1992 J. Stat. Phys. 66 273
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!