Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050507    DOI: 10.1088/1674-1056/19/5/050507
GENERAL Prev   Next  

A new approach to stability analysis of neural networks with time-varying delay via novel Lyapunov--Krasovskii functional

S. M. Leea)†, O. M. Kwonb)‡, and Ju H. Park c)*
a Department of Electronic Engineering, Daegu University, Gyungsan, Gyungbuk 712-714, Republic of Korea; b College of Electrical and Computer Engineering, 410 SungBong-Ro, Heungduk-Gu, Chungbuk National University, Cheongju 361-763, Republic of Korea; c Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea
Abstract  In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities (LMIs) by constructing new Lyapunov--Krasovskii functional. The proposed functional has an augmented quadratic form with states as well as the nonlinear function to consider the sector and the slope constraints. The less conservativeness of the proposed stability criteria can be guaranteed by using convex properties of the nonlinear function which satisfies the sector and slope bound. Numerical examples are presented to show the effectiveness of the proposed method.
Keywords:  neural networks      Lyapunov--Krasovskii functional      sector bound      time-delay  
Received:  19 August 2009      Revised:  29 October 2009      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.10.Yn (Matrix theory)  
  02.30.Yy (Control theory)  
  02.60.Dc (Numerical linear algebra)  

Cite this article: 

S. M. Lee, O. M. Kwon, and Ju H. Park A new approach to stability analysis of neural networks with time-varying delay via novel Lyapunov--Krasovskii functional 2010 Chin. Phys. B 19 050507

[1] Tao Q, Cao J, Xue M and Qiao H 2001 Phys. Lett. A 288 88
[2] Cannas B, Cincotti S, Marchesi M and Pilo F 2001 Chaos, Solitons and Fractals 12 2109
[3] van Putten M and Stam C J 2001 Phys. Lett. A 281 131
[4] Gu K, Kharitonov V L and Chen J 2003 Stability of Time-Delay Systems (Boston: Birkhauser)
[5] Ensari T and Arik S 2005 IEEE Trans. Automat. Contr. 11 1781
[6] Xu S, Lam J and Ho D W C 2005 Phys. Lett. A 342 322
[7] Chen D L and Zhang W D 2008 Chin. Phys. B 17 1506
[8] Park J H 2006 Phys. Lett. B 349 494
[9] Li D, Wang Y, Yang D, Zhang X and Wang S 2008 Chin. Phys. B 17 4091
[10] Park J H and Kwon O M 2009 Modern Phys. Lett. B 23 1743
[11] Li T, Guo L, Sun C and Lin C 2008 IEEE Trans. Neural Netw. 19 726
[12] Chen Y and Wu Y 2009 Neurocomputing 72 1065
[13] Tang Y, Zhong H H and Fang J A 2008 Chin. Phys. B 17 4080
[14] Kwon O M and Park J H 2009 Phys. Lett. A 373 529
[15] Zhang X M and Han Q L 2009 IEEE Trans. Neural Netw. 20 533
[16] Wang Y and Zuo Z 2007 Lecture Notes in Computer Science 4432 704--712 (Heidelberg Berlin: Spinger-Verlag)
[17] Hua C, Long C and Guan X 2006 Phys. Lett. A 352 335
[18] Khalil H K 1996 Nonlinear Systems 2nd Ed. (New Jersey: Prentice Hall, Englewood Cliffs)
[19] Haddad W M and Kapila V 1995 IEEE Trans. Automatic Control 40 361
[20] Park P 2002 IEEE Trans. Automatic Contr. 47 308
[21] Lee S M, Kwon O M and Park J H 2008 Phys. Lett. A 372 4010
[22] Skelton R E, Iwasaki T and Grigoradis K M 1997 A Unified Algebraic Approach to Linear Control Design (New York: Taylor and Francis)
[23] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[24] Cao J 2002 Int. J. Syst. Sci. 31 1313
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[3] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[4] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[5] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[6] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[7] Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
Zijian Jiang(蒋子健), Jianwen Zhou(周健文), and Haiping Huang(黄海平). Chin. Phys. B, 2021, 30(4): 048702.
[8] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[9] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[10] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[11] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[12] Application of the edge of chaos in combinatorial optimization
Yanqing Tang(唐彦卿), Nayue Zhang(张娜月), Ping Zhu(朱萍), Minghu Fang(方明虎), and Guoguang He(何国光). Chin. Phys. B, 2021, 30(10): 100505.
[13] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[14] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[15] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
No Suggested Reading articles found!