Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050305    DOI: 10.1088/1674-1056/19/5/050305
GENERAL Prev   Next  

Unconditional preparation of multipartite continuous-variable entangled states among remote parties

Hu Xue-Yuan(胡雪元)a), Gu Ying(古英) a), Gong Qi-Huang(龚旗煌)a), and Guo Guang-Can(郭光灿)a)b)
a State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; b Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  We demonstrate that the $n$-partite continuous-variable entanglement can be unconditionally prepared among $n$ parties that share no common past, from $n$ two-mode squeezed states. Both GHZ-like and cluster-like states can be generated for any nonzero squeezing in the entangled sources. An application of the resulting multipartite entangled state to a teleportation network is illustrated.
Keywords:  entanglement redistribution      multipartite continuous-variable entanglement      a teleportation network  
Received:  08 July 2009      Revised:  09 November 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos.~10674009, 10874004 and 10821062) and the National Key Basic Research Program of China (Grant No.~2006CB921601).

Cite this article: 

Hu Xue-Yuan(胡雪元), Gu Ying(古英), Gong Qi-Huang(龚旗煌), and Guo Guang-Can(郭光灿) Unconditional preparation of multipartite continuous-variable entangled states among remote parties 2010 Chin. Phys. B 19 050305

[1] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Computers, Systems, and Signal Processing (India: Bangalore) p175
[2] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357
[3] Bostr\"{oem K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[4] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[5] Zhang Z J, Man Z X and Li Y 2004 Phys. Lett. A 333 46
[6] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[7] Nguyen B A 2004 Phys. Lett. A 328 6
[8] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[9] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[10] D eng F G and Long G L 2006 Commun. Theor. Phys. 46 443
[11] Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
[12] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 22
[13] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
[14] Xia Y, Fu C B, Zhang S, Hong S K, Yeon K H and Um C I 2006 J. Korean Phys. Soc. 48 24
[15] Chen P, Deng F G and Long G L 2006 Chin. Phys. 15 2228
[16] Chen P, Li Y S, Deng F G and Long G L 2007 Commun.Theor. Phys. 47 49
[17] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[18] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[19] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359
[20] Deng F G, Long G L and Zhou H Y 2005 Phys. Lett. A 340 43
[21] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 354 190
[22] Yang Y G and Wen Q Y 2007 Sci. Chin. G: Phys. Mech. Astron. 50 558
[23] Yang Y G, Wen Q Y and Zhu F C 2007 Chin. Phys. 16 1838
[24] Zhang Z J, Liu J, Wang D and Shi S 2007 Phys. Rev. A 75 026301
[25] Zhang Z J 2005 Phys. Lett. A 342 60
[26] Zhang Z J, Li Y and Man Z X 2005 Phys. Lett. A 341 385
[27] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[28] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[29] Zhang Z J 2005 Phys. Lett. A 342 60
[30] Zhang Z J and Man Z X 2005 Phys. Rev. A 72 022303
[31] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[32] Wang J, Zhang Q and Tang C J 2007 Commun. Theor. Phys. 47 454
[33] Han L F, Liu Y M, Liu J and Zhang Z J 2008 Opt. Commun. 281 2690
[34] Qin S J, Gao F, Wen Q Y and Zhu F C 2008 Opt. Commun. 281 5472
[35] Wang T Y, Wen Q Y, Chen X B, Guo F Z and Zhu F C 2008 Opt. Commun. {281 6130
[36] Li B K, Yang Y G and Wen Q Y 2009 Chin. Phys. Lett. 26 010302
[37] Yang Y G and Wen Q Y 2008 Sci. Chin. G: Phys. Mech. Astron. 51 1308
[38] Yang Y G and Wen Q Y 2008 Chin. Phys. B 17 419
[39] Zhang Z J 2006 Opt. Commun. 261 199
[40] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[41] Bandyopadhyay S 2000 Phys. Rev. A 62 012308
[42] Hsu L Y 2003 Phys. Rev. A 68 022306
[43] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[44] Yang Y G and Wen Q Y 2009 Int. J. Quantum Inform. 7 1249
[45] Deng F G, Zhou H Y and Long G L 2005 Phys. Lett. A 337 329
[46] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
[47] Zhang Z J, Yang J, Man Z X and Li Y 2005 Eur. Phys. J. D 33 133
[48] Lance A M, Symul T, Bowen W P, Sanders B C, Tyc T, Ralph T C and Lam P K 2005 Phys. Rev. A 71 033814
[49] Li X H, Deng F G, Zhou H Y 2007 Chin. Phys. Lett. 24 1151
[50] Yang J and Liu J 2008 Commun. Theor. Phys. 49 338
[51] Zhou P, Li X H, Deng F G and Zhou H Y 2007 J. Phys. A: Math.Theor. 40 13121
[52] Zhan Y B 2007 Chin. Phys. 16 2557
[53] Ji H, Zhan X G and Zeng H S 2007 Chin. Phys. Lett. 24 2724
[54] Li X H and Deng F G 2008 Front. Comput. Sci. China 2 147
[55] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[56] Yeo Y and Chua W K 2006 Phys. Rev.Lett. 96 060502
[57] Wang X W and Yang G J 2008 Phys. Rev. A 78 024301
[58] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[59] D\"{Ur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[60] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[61] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[62] Xiu X M, Dong H K, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 2457
[63] Cai Q Y 2006 Phys. Lett. A 351 23
[64] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[65] Qin S J, Gao F, Wen Q Y and Zhu F C 2006 Phys. Lett. A 357 101
[66] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302.
[67] Gao F, Qin S J, Wen Q Y and Zhu F C 2007 Quantum Inf. Comput. 7 329
[68] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[69] Cabello A 2000 Phys. Rev. Lett. 85 5635
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[3] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[4] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[5] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[6] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[7] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[8] Lie transformation on shortcut to adiabaticity in parametric driving quantum systems
Jian-Jian Cheng(程剑剑), Yao Du(杜瑶), and Lin Zhang(张林). Chin. Phys. B, 2021, 30(6): 060302.
[9] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[10] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[11] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[12] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[13] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[14] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!