Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050304    DOI: 10.1088/1674-1056/19/5/050304
GENERAL Prev   Next  

Quantum phase transition and entanglement in Heisenberg XX spin chain with impurity

Chen Shi-Rong(陈士荣), Xia Yun-Jie(夏云杰), and Man Zhong-Xiao(满忠晓)
Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China
Abstract  In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.
Keywords:  Heisenberg XX chain      thermal entanglement      impurity lattice      quantum phase transition  
Received:  09 September 2009      Revised:  12 November 2009      Accepted manuscript online: 
PACS:  73.43.Nq (Quantum phase transitions)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Pq (Spin chain models)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.30.Hx (Magnetic impurity interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10774088), the Key Program of the National Natural Science Foundation of China (Grant No.~10534030).

Cite this article: 

Chen Shi-Rong(陈士荣), Xia Yun-Jie(夏云杰), and Man Zhong-Xiao(满忠晓) Quantum phase transition and entanglement in Heisenberg XX spin chain with impurity 2010 Chin. Phys. B 19 050304

[1] Bennett C H, Brassaro G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Kim Y H, Kulik S P and Shih Y 2001 Phys. Rev. Lett. 86 1370
[3] Cheng W W, Huang Y X, Liu T K and Li H 2007 Chin. Phys. 16 38
[4] Shan C J, Man Z X, Xia Y J and Liu T K 2007 Int. J. Quantum Information 5 335
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Wooters W K and Zurek W H 1982 Nature 299 802 (in London)
[7] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[8] Kane B E 1998 Nature (London) 393 133
[9] Sorensen A and Molmer K 1999 Phys. Rev. Lett. 82 4556
[10] Wu Y and Machta J 2005 Phys. Rev. Lett. 95 137208[10a] Cincio L, Dziarmaga J, Rams M M and Zurek W H 2007 Phys. Rev. A 75 052321[10b] Karthik J, Sharma A and Lakshminarayan A 2007 Phys. Rev. A 75 022304[10c] Su S Q, Song Q L and Gu S J 2006 Phys. Rev. A 74 032308
[11] Guo K T and Fu L P 2008 Acta Sinica Quantum Optica 14 1[11a] Venuti L C, Giampaolo S M, Illuminati F and Zanardi P 2007 Phys. Rev. A 76 052328[11b] Eisler V and Zimbor\'{as Z 2005 Phys. Rev. A 71 042318[11c] Cao M and Zhu S Q 2005 Phys. Rev. A 71 034311[11d] Wang X G 2002 Phys. Rev. A 66 034302
[12] Wang X G 2001 Phys. Rev. A 64 012313
[13] Sun Y, Chen Y G and Chen H 2003 Phys. Rev. A 68 044301
[14] Li S B and Xu J B 2003 Phys. Lett. A 311 313
[15] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[16] Cheng W W, Huang Y X, Liu T K and Li H 2007 Physica E 39 150
[17] Fu H C, Solomon A I and Wang X G 2002 J. Phys. A 35 4293
[18] Zhang T, Xi X Q and Yue R H 2004 Acta Phys. Sin. 53 2755 (in Chinese)
[19] Wang X G and Molmer K 2002 Eur. Phys. J. D 18 385
[20] Wang X G, Fu H C and Solomon A I 2001 J. Phys. A 34 11307
[21] Xi X Q, Hao S R, Chen W X and Yue R H 2002 Phys. Lett. A 297 291
[22] Vertraete F, Martin-Delgado M A and Cirac J I 2004 Phys. Rev. Lett. 92 087201
[23] Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. B 17 0794[23a]Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. Lett. 25 817
[24] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902 [24a] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110[24b] Yang M F 2005 Phys. Rev. A 71 030302[24c] Ren J and Zhu S Q 2009 Phys. Rev. A 79 034302
[25] Roscilde T, Verrucchi P, Fubini A, Haas S and Tognetti V 2005 Phys. Rev. Lett. 94 147208[25a] Wu L A, Sarandy M S, Lidar D A and Sham L J 2006 Phys. Rev. A 74 052335[25b] Somma R, Ortiz G, Barnum H, Knill E and Viola L 2004 Phys. Rev. A 70 042311[25c] Peng X H, Du J F and Suter D 2005 Phys. Rev. A 71 012307
[26] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[27] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022[27a] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[28] Nielsen M A 1998 Quantum Information Theory (American: University of New Mexico)
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[4] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[5] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[6] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[7] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[8] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[9] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[10] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[13] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[14] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
[15] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
No Suggested Reading articles found!