Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050202    DOI: 10.1088/1674-1056/19/5/050202
GENERAL Prev   Next  

A new (2+1)-dimensional supersymmetric Boussinesq equation and its Lie symmetry study

Wang You-Fa(王友法)a)b), Lou Sen-Yue(楼森岳) a)c)d)†, and Qian Xian-Min(钱贤民)b)
a Department of Physics, Ningbo University, Ningbo 315211, Chinab Department of Physics, Shaoxing University, Shaoxing 312000, China; c Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, Chinad School of Mathematics, Fudan University, Shanghai 200433, China
Abstract  According to the conjecture based on some known facts of integrable models, a new (2+1)-dimensional supersymmetric integrable bilinear system is proposed. The model is not only the extension of the known (2+1)-dimensional negative Kadomtsev--Petviashvili equation but also the extension of the known (1+1)-dimensional supersymmetric Boussinesq equation. The infinite dimensional Kac--Moody--Virasoro symmetries and the related symmetry reductions of the model are obtained. Furthermore, the traveling wave solutions including soliton solutions are explicitly presented.
Keywords:  integrable models      supersymmetry      symmetries and symmetry reductions      exact solutions  
Received:  27 July 2009      Revised:  23 November 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  02.30.Tb (Operator theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10735030), the Scientific Research Fund of Zhejiang Provincial Education Department (Grant No.~20040969), the National Basic Research Programs of China (Grant Nos.~2007CB814800 and 2005CB422301) and the PCSIRT (IRT0734).

Cite this article: 

Wang You-Fa(王友法), Lou Sen-Yue(楼森岳), and Qian Xian-Min(钱贤民) A new (2+1)-dimensional supersymmetric Boussinesq equation and its Lie symmetry study 2010 Chin. Phys. B 19 050202

[1] Chavanis P H and Sommeria J 1997 Phys. Rev. Lett. 78 3302
[1a] Chavanis P H 2000 Phys. Rev. Lett. 84 5512
[2] Dolan L 1997 Nucl. Phys. B 489 245
[2a] Distler J and Hanany A 1997 Nucl. Phys. B 496 75
[3] Loutsenko I and Roubtsov D 1997 Phys. Rev. Lett. 78 3011
[3a] Busch T and Anglin J R 2001 Phys. Rev. Lett. 87 010401
[3b] Yang R S,Yao C M and Chen R X 2009 Chin. Phys. B 18 3736
[4] Gedalin M, Scott T C and Band Y B 1997 Phys. Rev. Lett. 78 448
[4a] Georges T 1997 Optics Lett. 22 679
[4b] Tang Y and Yan X H 2000 Chin. Phys. 9 565
[5] Weigel H, Gamberg L and Reinhardt H 1997 Phys. Rev. D 55 6919
[6] Drinfeld V G and Sokolov V V Dokl 1981 Akal. Nauk. USSR 258 11
[7] Wilson G 1981 Ergod Th Dynam. Syst. 1 361
[8] Calogero F and Eckhaus W 1988 Inv. Prob. 3 229
[8a] Calogero F, Degasperis A and Ji X D 2000 J. Math. Phys. 41 6399
[8b] Calogero F, Degasperis A and Ji X D 2001 J. Math. Phys. 42 2635
[9] Maccari A 1996 J. Math. Phys. 37 6207
[9a] Maccari A 1998 Int. J. Nonlinear Mech. 33 713
[9b] Maccari A 1998 Nonlinear Dynamics 15 329
[10] Lou S Y 1997 Sci. China A40 1317
[11] Lin J 1996 Commun. Theor. Phys. (Beijing, China) 25 447
[11a] Lou S Y, Lin J and Yu J 1995 Phys. Lett. A201 47
[11b] Lin J, Lou S Y and Wang K L 2000 Z. Naturforsch 55a 589
[12] Yu J and Lou S Y 2000 Sci. China A 43 655
[12a] Lou S Y, Yu J and Tang X Y 2000 Z. Naturforsch 55a 867
[13] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[13a] Lou S Y 1998 J. Math. Phys. 39 2112
[13b] Lou S Y and Xu J J 1998 Math. Phys. 80 5364
[13c] Lou S Y 1997 Commun. Theor. Phys. (Beijing, China) 27 249
[14] Li J H and Lou S Y 2008 Chin. Phys. B 17 747
[15] Gegenhasi, Hu X B and Wang H Y 2007 Phys. Lett. A 360 439
[16] Li J H, Jia M and Lou S Y 2007 J. Phys. A: Math. Theor. 40 1585
[17] Liu Q P and Hu X B 2005 J. Phys. A 18 6371
[18] Liu Q P, Hu X B and Zhang M X 2005 Nonlinearity 18 1597
[19] Zhang M X, Liu Q P, Wang J and Wu K 2008 Chin. Phys. B 17 10
[20] Liu Q P and Yang X X 2006 Phys. Lett. 351 131
[21] Lou S Y 1998 Phys. Scr. 57 481
[22] Guo C H, Li Y S, Cao C W, Tian C, Tu G Z, Hu H C, Guo B Y and Ge M L, 1990 Soliton Theory and its Application (Hangzhou, China: Zhejiang Publishing House of Science and Technology) p237
[23] Olver P J 1986 Applications of Lie Group to Differential Equations (Berlin: Springer) p76
[24] Mikhailov A V, Shabat A B and Sokolov V V 1991 What is Integrability (Berlin: Springer) p115
[25] Lou S Y 2000 J. Math. Phys. 41 6509
[26] Tang X Y and Shukla P K 2007 Phys. Scr. 76 665
[27] Qian S P and Tian L X 2007 Chin. Phys. 16 303
[28] Fan E G 2007 Chin. Phys. 16 1505
[29] Ruan H Y and Chen Y X 2001 Chin. Phys. 10 87
[1] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[2] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[3] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[4] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[5] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[6] Linear optical approach to supersymmetric dynamics
Yong-Tao Zhan(詹颙涛), Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Wei-Wei Pan(潘维韦), Munsif Jan, Fu-Ming Chang(常弗鸣), Kai Sun(孙凯), Jin-Shi Xu(许金时), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(1): 014209.
[7] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[8] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[9] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[10] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[11] The nonrelativistic oscillator strength of a hyperbolic-type potential
H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo. Chin. Phys. B, 2013, 22(6): 060202.
[12] The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics
S. Hassanabadi, M. Ghominejad, S. Zarrinkamar, H. Hassanabadi. Chin. Phys. B, 2013, 22(6): 060303.
[13] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[14] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[15] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
No Suggested Reading articles found!