Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 048601    DOI: 10.1088/1674-1056/19/4/048601
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A first-principles study of the catalytic mechanism of the dehydriding reaction of LiNH2 through adding Ti catalysts

Zhang Hui(张辉)a)† , Liu Gui-Li(刘贵立)b), Qi Ke-Zhen(戚克振) a), Zhang Guo-Ying(张国英)a), Xiao Ming-Zhu(肖明珠) a), and Zhu Sheng-Long(朱圣龙)c)
a College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China; b College of Constructional Engineering, Shenyang University of Technology, Shenyang 110023, China; c State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  Experiments on a ball milled mixture with a 1:1 molar ratio of LiNH2 and LiH with a small amount (1 mol %) of Tinano, TiCl3 and TiO2nano have revealed a superior catalytic effect on Li--N--H hydrogen storage materials. In the x-ray diffraction profiles, no trace of Tinano, TiCl3 and TiO2nano was found in these doped composites, by which we deduced that Ti atoms enter LiNH2 by partial element substitution. A first-principles plane-wave pseudopotential method based on density functional theory has been used to investigate the catalytic effects of Ti catalysts on the dehydrogenating properties of LiNH2 system. The results show that Ti substitution can reduce the dehydrogenation reaction activation energy of LiNH2 and improve the dehydrogenating properties of LiNH2. Based on the analysis of the density of states and overlap populations for LiNH2 before and after Ti substitution, it was found that the stability of the system of LiNH2 is reduced, which originates from the increase of the valence electrons at the Fermi level (EF) and the decrease of the highest occupied molecular orbital (HOMO)--lowest unoccupied molecular orbital (LUMO) gap ($\Delta E_{\rm H-L})$ near EF. The catalytic effect of Ti on the dehydrogenating kinetics of LiNH2 may be attributed to the reduction of average populations between N--H per unit bond length (nm$^{ - 1})$, which leads to the reduction of the chemical bond strength of N--H.
Keywords:  LiNH2      first-principles calculation      dehydrogenating properties      Ti catalytic mechanism  
Received:  28 April 2009      Revised:  26 September 2009      Accepted manuscript online: 
PACS:  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  84.60.-h (Direct energy conversion and storage)  
  71.20.Ps (Other inorganic compounds)  
  82.30.-b (Specific chemical reactions; reaction mechanisms)  
Fund: Project supported by the National High Technology Research $\&$ Development of China (Grant No.~2009AA05Z105), the National Natural Science Foundation of China (Grant No.~50671069), the Science Research Program of the Education Bureau of Liaoning Province

Cite this article: 

Zhang Hui(张辉), Liu Gui-Li(刘贵立), Qi Ke-Zhen(戚克振), Zhang Guo-Ying(张国英), Xiao Ming-Zhu(肖明珠), and Zhu Sheng-Long(朱圣龙) A first-principles study of the catalytic mechanism of the dehydriding reaction of LiNH2 through adding Ti catalysts 2010 Chin. Phys. B 19 048601

[1] Chen P, Xiong Z T, Luo J Z, Lin J Y and Tan K L 2002 Nature 420 302
[2] Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Noritake T and Towata S 2004 Appl. Phys. A 79 1765
[3] Nakamori Y and Orimo S 2004 J. Alloys Compd. 370 271
[4] Nakamori Y and Orimo S 2004 Mater. Sci. Eng. B 108 48
[5] Ichikawa T, Hanada N, Isob S, Leng H Y and Fujii H 2005 J. Alloys. Compd. 404 435
[6] Ichikawa T, Isobe S, Hanada N and Fujii H 2004 J. Alloys. Compd. 365 271
[7] Isob S, Ichikawa T and Hanada N 2005 J. Alloys Compd. 404 439
[8] Zhou J J, Chen Y G, Wu G L, Zheng X, Fang Y C and Gao T 2009 Acta Phys. Sin. 58 4853 (in Chinese)
[9] Chen Y H, Kang L, Zhang C R, Luo L C and Ma J 2008 Acta Phys. Sin. 57 4866 (in Chinese)
[10] Chen Y H, Kang L, Zhang C R, Luo L C and Pu Z S 2008 Acta Phys. Sin. 57 4174 (in Chinese)
[11] Song Y and Guo Z X 2006 Phys. Rev. B 74 195120
[12] Ohoyama K, Nakamori Y, Orimo S and Yamada K 2005 J. Phys. Soc. Jpn. 74 483
[13] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasinp P J, Clark S J and Payne M C 2002 J. Phys. Condens. Matter 14 2717
[14] Marlo M and Milman V 2000 Phys. Rev. B 62 2899
[15] Liu Z M, Cui T, Ma Y M, Liu B B and Zou G T 2007 Acta Phys. Sin. 56 8 (in Chinese)
[16] Vanderbilt D 1990 Phys. Rev. B 41 7892
[17] Franscis G P and Payne M C 1990 J. Phys. Condens. Matter 2 4395
[18] Hammer B, Hansen L B and Norkov J K 1999 Phys. Rev. B 59 7413
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Imai Y, Mukaida M and Tsunoda T 2000 Intermetallics 8 381
[21] Wang J, Wang G and Zhao J 2002 Phys. Rev. B 66 035418
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!