Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 040309    DOI: 10.1088/1674-1056/19/4/040309
GENERAL Prev   Next  

Remote preparation of atomic and field cluster states from a pair of tri-partite GHZ states

Ashfaq H. Khosaa)†, Rameez-ul-Islamb)c), and Farhan Saifb)
a Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan; b Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan; c Photonics Division, National Institute of Lasers and Optronics, PINSTECH, Nilore, Islamabad, Pakistan
Abstract  We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states. In the case of atomic state generation, we utilize simultaneous resonant and dispersive interactions of the two two-level atoms at the preparation station. Atoms involved in these interactions are individually pair-wise entangled into two different tri-partite GHZ states. After interaction, the passage of the atoms through a Ramsey zone and their subsequent detection completes the protocol. However, for field state generation we first copy the quantum information in the cavities to the atoms by resonant interactions and then adapt the same method as in the case of atomic state generation. The method can be generalised to remotely generate any arbitrary graph states in a straightforward manner.
Keywords:  quantum information      entanglement production      cavity quantum electrodynamics  
Received:  20 June 2009      Revised:  11 July 2009      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  02.50.Cw (Probability theory)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  

Cite this article: 

Ashfaq H. Khosa, Rameez-ul-Islam, and Farhan Saif Remote preparation of atomic and field cluster states from a pair of tri-partite GHZ states 2010 Chin. Phys. B 19 040309

[1] Schr?dinger E 1935 Proc. Camb. Phil. Soc. 31] 555
[1a] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[1b] Bell JS 1964 Physics 1 195
[1c] Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett. 49 1804
[2] Ekert A and Josa R 1996 Rev. Mod. Phys. 68 733
[2a] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74] 145
[2b] Galindo A and Delgado MAM 2002 Rev. Mod. Phys. 74 347
[2c] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[3] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett.] 86 910
[4] Hein M, Eisert J and Briegel H J 2004 Phys. Rev. A 69 062311
[5] Hein M, Dur W, Eisert J, Raussendorf R, van den Nest M and Briegel H J e-print quant-ph/0602096
[6] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett.] 86 5188
[6a] Nielsen M A 2006 Rep. Math. Phys. 57 147
[6b] Browne D and Briegel H J e-print quant-ph/0603226
[7] Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169
[7a] Recently the same task has been done using two-photon four-qubit cluster states, see, Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503
[7b] Vallone G, Pomarico E, Martini F D and Mataloni P 2008 Phys. Rev. A 78 042335
[7c] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. Lett.] 100 210501
[7d] Vallone G, Pomarico E, Martini F D and Mataloni P 2008 Phys. Rev. Lett. 100 160502
[8] Scarani V, Acin A, Schenck E and Aspelmeyer M 2005 Phys. Rev. A 71 042325
[8a] Walther P, Aspelmeyer M, Resch K J and Zeilinger A 2005 Phys. Rev. Lett. 95 020403
[9] Dür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
[10] Barrett S D and Kok P 2005 Phys. Rev. A 71 R060310
[10a] Zheng S B 2006 Phys. Rev. A 73 065802
[10b] Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
[10c] Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303
[10d] Tanamoto T, Liu Y X, Fujita S, Hu X and Nori F 2006 Phys. Rev. Lett. 97 230501
[11] Zou X and Mathis W 2005 Phys. Rev. A 72 013809
[11a] Schon C, Solano E, Verstraete F, Cirac J I and Wolf M M 2005 Phys. Rev. Lett.] 95 110503
[11b] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
[11c] Dong P, Xue Z Y, Yang M and Cao Z L 2006 Phys. Rev. A 73 033818
[12] Zou X and Mathis W 2005 Phys. Rev. A 71 032308
[12a] Kiesel N, Schmid C, Weber U, Toth G, Guhne O, Ursin R and Weinfurter H 2005 Phys. Rev. Lett. 95 210502
[12b] Zhang A N, Lu C Y, Zhou X O, Chen Y A, Zhao Z, Yang T and Pan J W 2006 Phys. Rev. A 73 022330
[12c] Zhang J and Braunstein S L 2006 Phys. Rev. A 73 032318
[12d] Gilbert G, Hamrick M and Weinstein Y S 2006 Phys. Rev. A 73 064303
[13] Bergou J and Hillery M 1997 Phys. Rev. A 55 4585
[14] Lange W and Kimble H J 2000 Phys. Rev. A 61 063817
[14a] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[14b] Sagi Y 2003 Phys. Rev. A 68 042320
[14c] Zou X, Pahlke K and Mathis W 2004 Phys. Rev. A 69 052314
[14d] Deng Z J, Feng M and Gao K L 2007 Phys. Rev. A 75] 024302
[14e] Yu C S, Yi X X and Mei D 2007 Phys. Rev. A 75 044301
[15] Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 82 1345
[15a] Pan J W, Bouwmeester D, Daniell M, Weinfurter H and Zeilinger A 2000 Nature 403 515
[15b] Tittel W, Zbindel H and Gisin N 2001 Phys. Rev. A 63 042301
[15c] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86] 4435
[15d] Zhao Z, Yang T, Chen Y A, Zhang A N, Zukowski M and Pan J W 2003 Phys. Rev. Lett. 91 180401
[15e] Resch K J, Walther P and Zeilinger A 2005 Phys. Rev. Lett. 94 070402
[16] Rauschenbeutel A, Bertet P, Osnaghi S, Nogues G, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. A 64 050301
[17] Ikram M and Saif F 2002 Phys. Rev. A 66 014304
[18] Scully M O and Zubairy M S 1997 Quantum Optics] (Cambridge: Cambridge University Press)
[18a] Zubairy M S, Agarwal G S and Scully M O 2004 Phys. Rev. A 70 012316
[19] Delèglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J M and Haroche S 2008 Nature 455 510
[19a] Gleyzes S, Kuhr S, Guerlin C, Bernu J, Delèglise S, Hoff U B, Raimond J M, Haroche S and Brune M 2007 Nature 446 297
[20] Vahala K J 2003 Nature 424 839
[21] Dürr S, Nonn T and Rempe G 1998 Nature 395 33
[21a] Kunze S, Dürr S and Rempe G 1996 Europhys. Lett. 34 343
[21b] Fortier K M, Kim S Y, Gibbons M J, Ahmadi P and Chapman M S 2007 Phys. Rev. Lett. 98 233601
[22] For detailed information about experimental potential of cavity QED as well as for a recent review, see Haroche S and Raimond J M 2006 Exploring the Quantum: Atoms, Cavities and Photons} (Oxford: Oxford University Press)
[22a] Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys.] 69 1325
[23] Rempe G, Kaler F S and Walther H 1990 Phys. Rev. Lett.] 64 2783
[23a] Guerry C C 1996 Phys. Rev. A 54 R2529
[23b] Varcoe B T H, Brattke S, Englert B G and Walther H 2000 Fortschr. Phys. 48 679
[24] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys.] 73 565
[25] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
[26] Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 Science 287 1447
[26a] Doherty A C, Lynn T W, Hood C J and Kimble H J 2000 Phys. Rev. A 63 013401
[26b] Pinkse P H W, Fischer T, Mauz P and Rempe G 2000 Nature 404 365
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[4] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[5] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[6] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[7] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[8] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[9] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[10] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[11] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[12] Plasmon mediated entanglement dynamics of distant quantum dots
Misbah Qurban, Rabia Tahira, Guo-Qin Ge(葛国勤), Manzoor Ikram. Chin. Phys. B, 2019, 28(3): 030304.
[13] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[14] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[15] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
No Suggested Reading articles found!