Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 040202    DOI: 10.1088/1674-1056/19/4/040202
GENERAL Prev   Next  

Fluctuation theorem for the mutation process in in vitro evolution

Liu Qi(刘琪)a)b), Tang Chao(汤超) b)c), and Ouyang Qi(欧阳颀)a)b)†
a Department of Physics, Peking University, Beijing 100871, China; b Center for Theoretical Biology, Peking University, Beijing 100871, China; c California Institute for Quantitative Biomedical Research, Departments of Biopharmaceutical Sciences and Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
Abstract  A proposition based on the fluctuation theorem in thermodynamics is formulated to quantitatively describe molecular evolution processes in biology. Although we cannot give full proof of its generality, we demonstrate via computer simulation its applicability in an example of DNA in vitro evolution. According to this theorem, the evolution process is a series of exponentially rare fluctuations fixed by the force of natural selection.
Keywords:  fluctuation theorem      molecular evolution      natural selection  
Received:  29 June 2009      Revised:  17 September 2009      Accepted manuscript online: 
PACS:  87.15.Ya (Fluctuations)  
  87.17.-d (Cell processes)  
  87.23.Kg (Dynamics of evolution)  
  87.14.G- (Nucleic acids)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.19.Pp (Biothermics and thermal processes in biology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10721403), the National Basic Research Program of China (Grant No.~2007CB814802), and the Jun-Zheng Foundation at Peking University.

Cite this article: 

Liu Qi(刘琪), Tang Chao(汤超), and Ouyang Qi(欧阳颀) Fluctuation theorem for the mutation process in in vitro evolution 2010 Chin. Phys. B 19 040202

[1] Evans D J, Cohen E G D, and Morriss G P 1993 Phys. Rev. Lett. 71 2401
[2] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[3] Crooks G E 1999 Phys. Rev. E 60 2721
[4] Crooks G E 2000 Phys. Rev. E 61 2361
[5] Evans D J and Searles D J 2002 Advance in Physics 51 1529
[6] Wang G M, Carberry J C, Williams D R M, Sevick E M and Evans D J 2005 Phys. Rev. E 71 046142
[7] Schuler S, Speck T, Tietz C, Wrachtrup J and Seifert U 2005 Phys. Rev. Lett. 94 180602
[8] Wang G M, Sevick E M, Emil Mittag, Searles D J and Evans D J 2002 Phys. Rev. Lett. 89 050601
[9] Collin D, Ritort F, Jarzynski C, Smith S B, Tinoco I Jr and Bustamante C 2005 Nature 437 231
[10] Trepagnier E H, Jarzynski C, Ritort F, Crooks G E, Bustamante C J and Liphardt J 2004 PNAS 101] 15038
[11] Liphardt J, Dumont S, Smith S B, Tinoco I Jr and Bustamante C 2002 Science 296 1832
[12] Carberry D M, Reid J C, Wang G M, Sevick E M, Searles D J and Evans D J 2004 Phys. Rev. Lett. 92 140601
[13] Chen S B and Mei D C 2006 Chin. Phys. 15 2861
[14] Cao L, Cheng Q H, Wu D J and Xu D H 2006 Chin. Phys. 15 2324
[15] Chen Y D, Hu J M, Li L and Zhang Y 2009 Chin. Phys. B 18 1373
[16] Shang X D, Tong P and Xia K Q 2005 Phys. Rev. E 72 015301
[17] Ciliberto S, Garnier N, Hernandez S, Lacpatia C, Pinton J F and Chavarria G R 2004 Physica A 340 240
[18] Seifert U 2004 J. Phys.} A: Math. Gen. 37 L517
[19] Gaspard P 2004 J. Chem. Phys. 120 8898
[20] Yang Y, Wang H L and Ouyang Q 2003 Phys. Rev. E 68 031903
[21] Dubertret B, Liu S, Ouyang Q and Libchaber A 2001 Phys. Rev. Lett. 86 6022
[22] Peng W, Gerland U, Hwa T and Levine H 2003 Phys. Rev. Lett. 90 088103
[23] Kloster M and Tang C 2004 Phys. Rev. Lett. 92 038101
[24] Fields D S, He Y Y, Al-Uzri A Y and Stormo G D 1997 J. Mol. Biol. 271 178
[1] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
[2] Nonequilibrium thermodynamics and fluctuation relations for small systems
Cao Liang (曹亮), Ke Pu (柯谱), Qiao Li-Yan (乔丽颜), Zheng Zhi-Gang (郑志刚). Chin. Phys. B, 2014, 23(7): 070501.
No Suggested Reading articles found!