Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037803    DOI: 10.1088/1674-1056/19/3/037803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Towards an optical coupler using fine-wire: a study of the photovoltaic effect of a heterojunction formed in a single fine-wire of tungsten oxides

Chen Shang-Hui(陈尚辉), Chen Jian(陈建), Deng Shao-Zhi(邓少芝), and Xu Ning-Sheng(许宁生)
State Key Laboratory of Optoelectronic Materials and Technologies, and Guangdong Province Key Laboratory for Display Material and Technology, School of Physics and Engineering, SunYat-Sen University, Guangzhou 510275, China
Abstract  Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power transmission, and report on the realization of a heterojunction formed between WO2 and WO3 in a fine-wire having a diameter on the micrometer scale. Using a laser beam of 514.5 nm as a signal source, the WO2--WO3 heterojunction yields a maximum output power of up to 37.4 pico watt per heterojunction. Fast responses (less than a second) of both photovoltaic voltage and current are also observed. In addition, we demonstrate that it is a simple and effective way to adapt a commercial Raman spectrometer for the combined functions of fabrication, material characterization and photovoltaic measurement of an optical signal coupler and optical power transmitter based on a fine-wire. Our results show an attractive perspective of developing nanowire or fine-wire elements for coupling optical signals into and for powering a nanoelectronic or nano-optoelectronic integrated circuit that works under the condition of preventing it from directly electrically connecting with the optical coupler.
Keywords:  optical coupler      heterojunction      tungsten oxide fine-wire      photovoltaic  
Received:  29 June 2009      Revised:  15 September 2009      Accepted manuscript online: 
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  72.40.+w (Photoconduction and photovoltaic effects)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  42.79.Gn (Optical waveguides and couplers)  
  85.35.-p (Nanoelectronic devices)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~U0634002, 50725206 and 50672135), the National Basic Research Program of China (Grant Nos.~2003CB314701, 2007CB935501 and 2008AA03A314), and the Department of Information Industry of Guangdong Province, China.

Cite this article: 

Chen Shang-Hui(陈尚辉), Chen Jian(陈建), Deng Shao-Zhi(邓少芝), and Xu Ning-Sheng(许宁生) Towards an optical coupler using fine-wire: a study of the photovoltaic effect of a heterojunction formed in a single fine-wire of tungsten oxides 2010 Chin. Phys. B 19 037803

[1] Wan Q, Dattoli E N, Fung W Y, Guo W, Chen Y B, Pan X Q and Lu W 2006 Nano Lett. 6 2909
[2] Liu B, Boercker J E and Aydil E S 2008 Nanotechnology 19 7
[3] Tena-Zaera R, Elias J and Levy-Clement C 2008 Appl. Phys. Lett.93 233119
[4] Chen F, Gao Y T, Geng X H, Sun J, Wei C C, Xiong S Z, Zhang X D, Zhao Yand Zhu F 2006 Acta Phys. Sin. 55 6697 (inChinese)
[5] Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X and Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese)
[6] Liang L Y, Dai S Y, Hu L H, Dai J and Liu W Q 2009 Acta Phys. Sin. 58 1338 (in Chinese)
[7] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L andLieber C M 2007 Nature 449 885
[8] Zhou J, Gong L, Deng S Z, Chen J, She J C, Xu N S, Yang R S and Wang Z L2005 Appl. Phys. Lett. 87 3
[9] Lu D Y, Chen J, Zhou J, Deng S Z, Xu N S and Xu J B 2007 J. Raman Spectrosc. 38 176
[10] Frey G L, Rothschild A, Sloan J, Rosentsveig R, Popovitz-Biro R andTenne R 2001 J. Solid State Chem. 162 300
[11] Chen J, Lu D Y, Zhang W H, Xie F Y, Zhou J, Gong L, Liu X, Deng S Z and Xu N S 2008 J. Phys. D-Appl. Phys. 41 6
[12] Kwon Y T, Song K Y, Lee W I, Choi G J and Do Y R 2000 J. Catal. 191 192
[13] Chen H J, Xu N S, Deng S Z, Zhou J, Li Z L, Ren H, Chen J and She J C2007 J. Appl. Phys. 101 5
[14] Granqvist C G 2000 Sol. Energy Mater. Sol. Cells 60 201
[15] Solis J L, Saukko S, Kish L, Granqvist C G and Lantto V 2001 Thin Solid Films 391 255
[16] Chen H J, Xu N S, Deng S Z, Lu D Y, Li Z L, Zhou J and Chen J 2007 Nanotechnology 18 6
[17] She J C, An S, Deng S Z, Chen J, Xiao Z M, Zhou J and Xu N S 2007 Appl. Phys. Lett. 90 3
[18] Frank S, Poncharal P, Wang Z L and Heer W A 1998 Science 280 1744
[19] Luo J Y, Zhao F L, Gong L, Chen H J, Zhou J, Li Z L, Deng S Z and Xu NS 2007 Appl. Phys. Lett. 91 3
[20] Lu D Y, Chen J, Deng S Z, Xu N S and Zhang W H 2008 J. Mater. Res. 23 402
[21] Santato C, Odziemkowski M, Ulmann M and Augustynski J 2001 J. Am. Chem. Soc. 123 10639
[22] Weinhardt L, Blum M, Bar M, Heske C, Cole B, Marsen B and Miller E 2008 The Journal of Physical Chemistry C 112 3078
[23] Benadda A, Katrib A, Sobczak J and Barama A 2004 Applied Catalysis A, General 260 175
[24] Belatel H, Al-Kandari H, Al-Kharafi F, Garin F and Katrib A 2007 Applied Catalysis A, General 318 227
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[3] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[4] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[5] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[6] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[7] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[8] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[9] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[10] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[11] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[12] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[13] GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽). Chin. Phys. B, 2022, 31(5): 058801.
[14] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[15] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
No Suggested Reading articles found!