Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 034205    DOI: 10.1088/1674-1056/19/3/034205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

One-step implementation of an N-qubit quantum phase gate through a double Raman passage

LÜ Hai-Yan(吕海燕), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明)
Laboratory of Photonic Information Technology, SIPSE & LQIT, South China Normal University, Guangzhou 510006, China
Abstract  We propose a scheme for controllably implementing an N-qubit phase gate by one step within a ground-state subspace of N three-state atoms trapped in a cavity through a double Raman passage. We can extend our scheme to the realisation of an arbitrary N-qubit phase gate by appropriately adjusting coupling strengths and detunings between atoms and external driving fields. The advantage of this one-step scheme is its robustness against decoherence.
Keywords:  Raman-coupled model      quantum computation      quantum phase gate  
Received:  30 June 2009      Revised:  10 August 2009      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~60578055 and 60978009) and the National Basic Research Program of China(Grant Nos.~2007CB925204 and 2009CB929604).

Cite this article: 

LÜ Hai-Yan(吕海燕), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) One-step implementation of an N-qubit quantum phase gate through a double Raman passage 2010 Chin. Phys. B 19 034205

[1] Shor P 1994 Proceedings of the 35th AnnualSymposium on the Foundationof Computer Science (Los Alamitos: IEEE Computer Society Press) p124--134
[2] Grover L K 1998 Phys. Rev. Lett. 80 4329
[3] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
[4] Xiao Y F, Zou X B, Han Z F and Guo G C 2006 Phys. Rev. A 74 044303
[5] Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 054303
[6] Zou X B, Dong Y L and Guo G C 2006 Phys. Rev. A74 032325
[7] Zou X B, Xiao Y F, Li S B, Yang Y and Guo G C 2007 Phys. Rev. A 75 064301
[8] Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 014302
[9] McKeever J, Buck J R, Boozer A D, Kuzmich A, N?gerl H C,Stamper-Kurn D M and Kimble H J 2003 Phys. Rev. Lett.90 133602
[10] Ye J, Vernooy D W and Kimble H J 1999 Phys. Rev. Lett. 83 4987
[11] Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K,Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 030404
[12] Wu C F, Feng X L, Yi X X, Chen I M and Oh C H 2008 Phys. Rev. A 78062321
[13] Cai J W, Fang M F, Liao X P and Zheng X J 2006 Chin. Phys. 15 2518
[14] Xu L, Luo Z F and Zhang Z M 1994 J. Phys. B 27 1649
[15] Xu L and Zhang Z M 1994 J. Phys. B 95 507
[16] Dicke R H 1954 Phys. Rev. 93 99
[17] Zheng S B 2008 Phys. Rev. A 77 033852
[18] Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 Science 287 1447
[19] Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 012310
[20] Hu M L and Xi X Q 2008 Chin. Phys. B 17 3559
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[3] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[4] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[5] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[6] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[7] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[8] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[9] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[10] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[11] Quantum algorithm for a set of quantum 2SAT problems
Yanglin Hu(胡杨林), Zhelun Zhang(张哲伦), and Biao Wu(吴飙). Chin. Phys. B, 2021, 30(2): 020308.
[12] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[13] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[14] Quantum adiabatic algorithms using unitary interpolation
Shuo Zhang(张硕), Qian-Heng Duan(段乾恒), Tan Li(李坦), Xiang-Qun Fu(付向群), He-Liang Huang(黄合良), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(1): 010308.
[15] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
No Suggested Reading articles found!