Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 034204    DOI: 10.1088/1674-1056/19/3/034204
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Surface mico-structures on amorphous alloys induced by vortex femtosecond laser pulses

Ran Ling-Ling(冉玲苓)a), Qu Shi-Liang(曲士良) a)†, and Guo Zhong-Yi(郭忠义)a)b)
a Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China; b Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  This paper investigates the generation of self-organized surface structures on amorphous alloys by vortex femtosecond laser pulses. The scanning electron microscope characterizations show that the as-formed structures are periodic ripples, aperiodic ripples, and `coral-like' structures. Optimal conditions for forming these surface structures are determined in terms of pulses number at a given pulse energy. The applicable mechanism is suggested to interpret the formation and evolution of the `coral-like' structures.
Keywords:  femtosencond laser pulse      vortex      ripple      `coral-like' structures  
Received:  27 April 2009      Revised:  10 June 2009      Accepted manuscript online: 
PACS:  78.47.-p (Spectroscopy of solid state dynamics)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
Fund: Project supported by the Science and Technology Key Program of Shandong Province, China (Grant No.~2008GG10004020), China Postdoctoral Science Foundation (Grant No.~AUGA41001348), Heilongjiang Province Postdoctoral Science Foundation (Grant No.~AUGA1100074), and the Program of Excellent Team in the Harbin Institute of Technology, China.

Cite this article: 

Ran Ling-Ling(冉玲苓), Qu Shi-Liang(曲士良), and Guo Zhong-Yi(郭忠义) Surface mico-structures on amorphous alloys induced by vortex femtosecond laser pulses 2010 Chin. Phys. B 19 034204

[1] Yan L X, Zhang Y S, Zheng G X, Liu J R, Cheng J P and Lu M 2006 Chin. Phys.15 2271
[2] Zhong M J, Guo G L, Yang J Y, Ma N H, Ye G, Guo X D, Li R X and Ma H L2008 Chin. Phys. B 17 1674
[3] Dachraoui H, Husinsky W and Betz G 2006 Appl. Phys. A 83 333
[4] Guo Z Y, Qu S L, Ran L L, Han Y H and Liu S T 2008 Opt. Lett. 33 2383
[5] Harzic R Le, Huot N, Audouard E, Jonin C, Laporte P, Valette S,Fraczkiewicz A and Fortunier R 2002 Appl. Phys. Lett. 80 3886
[6] Birnbaum M 1965 J. Appl. Phys. 36 3688
[7] Borowiec A and Haugen H K 2003 Appl. Phys. Lett. 82 4462
[8] Zhao Q Z, Malzer S and Wang L J 2007 Opt. Lett. 32 1932
[9] Wu Q, Ma Y, Fang R, Liao Y, Yu Q, Chen X and Wang K 2003 Appl. Phys. Lett. 82 1703
[10] Emmony D C, Howson R P and Willis L J 1973 Appl. Phys. Lett. 23 598
[11] Li C B, Feng D H and Jia T Q 2005 Solid State Commum . 136 389
[12] Guo Z Y, Qu S L and Liu S T 2007 Opt. Commun . 273 286
[13] Bezuhanov K, Dreischuh A, Paulus G G, Sch?tzel M G andWalther H 2004 Opt. Lett. 29 1942
[14] Guo Z Y, Qu S L, Sun Z H and Liu S T 2008 Chin. Phys. B 17 4199
[15] Zhang G P, Liu Y and Zhang B 2006 Scri. Mate . 54 897
[16] Fukushige T, Hata S and Shimokohbe A 2005 Micr. Syst . 14 243
[17] Wang X L, Lu P X, Dai N G and Li Y H 2007 Appl. Phys. A 89 547
[18] Yong L C, Yang Y, Shui W H and Jun Y J 2008 Chin. Scie. Bull . 53 700
[19] Guillermin M, Garrelie F, Sanner N, Audouard E and Soder H 2007 Appl. Surf. Sci .253 8075
[20] Her T H, Finlay R J, Wu C, Deliwala S and Mazur E 1998 Appl. Phys. Lett. 73 1673
[21] Nayakl B K, Gupta M C and Kolasinski K W 2007 Nanotechnology 18 195302
[22] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
[23] Givargizov E I 1975 J. Cryst. Growth 31 20
[24] Vorobyev A Y and Guo C L 2008 Appl. Phys. Lett. 92 041914
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[6] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[9] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[13] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
[14] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[15] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
No Suggested Reading articles found!