Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030505    DOI: 10.1088/1674-1056/19/3/030505
GENERAL Prev   Next  

Synchronising chaotic Chua's circuit using switching feedback control based on piecewise quadratic Lyapunov functions

Zhang Hong-Bin(张洪斌) a)d), Xia Jian-Wei(夏建伟)b), Yu Yong-Bin(于永斌)c), and Dang Chuang-Yin(党创寅)d)
a School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; b School of Mathematics Science, Liaocheng University, Liaocheng 252000, China; c School of Computer Science & Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; d Manufacturing Engineering & Engineering Management, City University of Hong Kong, Kowloon, Hong Kong
Abstract  This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.
Keywords:  chaos      Chua's circuit      piecewise quadratic Lyapunov functions      synchronisation  
Received:  04 September 2008      Revised:  09 July 2009      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  02.10.Yn (Matrix theory)  
  02.30.Yy (Control theory)  
  84.30.Bv (Circuit theory)  
Fund: Project partially supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No.~101005), the National Natural Science Foundation of China (Grant No.~60904004), the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No.~L08010201JX0720).

Cite this article: 

Zhang Hong-Bin(张洪斌), Xia Jian-Wei(夏建伟), Yu Yong-Bin(于永斌), and Dang Chuang-Yin(党创寅) Synchronising chaotic Chua's circuit using switching feedback control based on piecewise quadratic Lyapunov functions 2010 Chin. Phys. B 19 030505

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Carroll T L and Pecora L M 1991 IEEE Trans. Circuits Syst. I 38 453
[3] Ogorzalek J 1993 IEEE Trans. Circuits Syst. I 40 693
[4] Hasler M and Maistrenko Y L 1997 IEEE Trans. Circuits Syst. I 44 857
[5] Pecora L M, Carroll T L, Johnson G A, Mar D J and Heagy J F 1997 Chaos 7 520
[6] Chen G and Dong X 1998 From Chaos to Order Methodologies,Perspectives and Applications, ser. Nonlinear Science (Singapore:World Scientific)
[7] Chua L O 1997 IEEE Trans. Circuits Syst. I 44 927
[8] Cuomo K M, Oppenheim A V and Strogatz S H 1993 IEEE Trans. Circuits Syst. II 40 626
[9] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou CS 2002 Physics Reports 366 1
[10] Yu Y B, Bao J B, Zhang H B, Zhong Q S, Liao X F and Yu J B 2008 Chin. Phys. B 17 2377
[11] Yu Y B, Zhong Q S, Liao X F and Yu J B 2008 Chin. Phys. B 17 842
[12] Li D and Zheng Z G 2008 Chin. Phys. B 17 4009
[13] Zhang H B, Li C G, Chen G R and Gao X 2005 Int. J. Mod. Phys. C 16 815
[14] Zhang H B, Liao X F and Yu J B 2005 Chaos, Solitons and Fractals 26 835
[15] Zhang J, Zhang H B, Li C G and Yu J B 2004 Chaos, Solitons and Fractals 21 1183
[16] Yang D S, Yu W, Zhang H G and Zhao Y 2008 Chin. Phys. B 17 4056
[17] Chen S H and Kong C C 2009 Chin. Phys. B 18 91
[18] Fu J, Ma T D and Zhang H G 2008 Chin. Phys. B 17 4407
[19] Yang S P and Zhang R X 2008 Chin. Phys. B 17 4073
[20] Han B, Han M and Niu Z Q 2008 Acta Phys. Sin. 57 6824 (in Chinese)
[21] Nijmeijer H and Mareels I M Y 1997 IEEE Trans. Circuits Syst. I 44 882 1997
[22] Grass G ane Mascolo S 1999 IEEE Trans. Circuits Syst. II 46 478
[23] Wu C W and Chua L O 1994 Int. J.Bifur. Chaos 4 979
[24] Blekhman I I, Fradkov A L, Nijmeijer H and Pogromsky A Y 1997 Syst. Contr.Lett. 31 299
[25] Huijberts H J C, Nijmeijer H and Willems R M A 2000 Int. J. Rob. Nonlin. Contr. 10 363
[26] Nijmeijer H A 2001 Physica D 154 219
[27] Jiang G P and Tang K S 2002 Int.J. Bifur.Chaos 12 2239
[28] Feng G 2002 IEEE Trans. CAS 49 224
[29] Mulder E F and Kothare M V 2000 Proceeding of the American ControlConference Chicago, Illinois p4813
[30] Zhang H B, Li C G and Liao X F 2005 Int. J. Mod. Phys. B 19 4389
[31] Zhang H B, Li C G, Zhang J, Liao X F and Yu J B 2005 Chaos, Solitons and Fractals 22 1053
[32] Chua L O 1985 IEEE Trans. Circuits Syst. I 32 797
[33] Johansson M and Rantzer A 1998 IEEE Trans. Automat. Contr. 43 555
[34] Johansson M 2003 Piecewise LinearControl Systems (Singapore-Verlag Berlin Heidelberg)
[35] Zhang H B, Li C G and Liao X F 2006 IEEE Trans. SMC-B 36 685
[36] Zhang H B and Feng G 2008 IEEE Trans. SMC-B 38 1390
[37] Zhang H B 2008 IEEE Trans. Fuzzy Systems 14 1649
[38] Boyd S, Ghaoui L, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and ControlTherory (Philadelphia: SIAM)
[39] Matsumoto T, Chua L O and Kobayashi K 1986 IEEE Trans. CircuitsSyst. 33 1143
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!