Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030502    DOI: 10.1088/1674-1056/19/3/030502
GENERAL Prev   Next  

Statistic properties of Fermi gas in a strong magnetic field

Men Fu-Dian(门福殿) and Fan Zhao-Lan(范召兰)
College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, China
Abstract  Based on the thermodynamic potential function of Fermi gas in a strong magnetic field, using the thermodynamics method, the integrated analytical expressions of thermodynamic quantities of the system at low temperatures are derived, and the effects of the magnetic field on the statistic properties of the system are analysed. It is shown that, as long as the temperature is not zero, the effects of the magnetic field on the thermodynamic quantities of the system contain both oscillatory and non-oscillatory parts. For the non-oscillatory part, compared with the situation of Fermi gas in a weak magnetic field, the influence of the magnetic field on the thermodynamic quantities is not exactly the same. For the oscillatory part, the period and amplitude of the oscillation are all related to the magnetic field. Due to the oscillation, the chemical potential may be greater than Ferim energy of the system, but the oscillation does not affect the thermodynamic stability of the system.
Keywords:  strong magnetic field      Fermi gas      statistic property  
Received:  09 August 2009      Revised:  23 August 2009      Accepted manuscript online: 
PACS:  05.30.Fk (Fermion systems and electron gas)  
  05.70.-a (Thermodynamics)  

Cite this article: 

Men Fu-Dian(门福殿) and Fan Zhao-Lan(范召兰) Statistic properties of Fermi gas in a strong magnetic field 2010 Chin. Phys. B 19 030502

[1] Regal C A, Ticknor C, Bohn J L and Jin D S 2003 Nature (London) 424 47
[2] Xiong H W, Liu S J, Zhang W P and Zhan M S 2005 Phys. Rev. Lett. 95 120401
[3] Dong H and Ma Y L 2009 Chin. Phys. B 18 715
[4] Qin F and Chen J S 2009 Phys. Rev. A 79 043625
[5] Xiong H W, Liu S J and Zhan M S 2006 Phys. Rev. A 74 033602
[6] Chen J S, Cheng C M, Li J R and Wang Y P 2007 Phys. Rev. A 76 033617
[7] Landau L D and Lifshitz E M 1999 Statistical Physics Part I. 3rded (Oxford: Pergamon Press) pp175--177
[8] Men F D, Liu H and Zhu H Y 2008 Sci. China Ser G 51 1072
[9] Xiong H W, Liu S J and Huang G X 2003 Phys. Lett. A 318 281
[10] Men F D 2006 Acta Phys. Sin. 55 1622 (in Chinese)
[1] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[2] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[3] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[4] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[5] Preparation of a two-state mixture of ultracold fermionic atoms with balanced population subject to the unstable magnetic field
Donghao Li(李东豪), Lianghui Huang(黄良辉), Guoqi Bian(边国旗), Jie Miao(苗杰), Liangchao Chen(陈良超), Zengming Meng(孟增明), Wei Han(韩伟), and Pengjun Wang(王鹏军). Chin. Phys. B, 2021, 30(9): 090303.
[6] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[7] Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea
Hong-Hao Yin(尹洪浩), Tian-Yang Xie(谢天扬), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(10): 106702.
[8] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[9] Topological superfluid in a two-dimensional polarized Fermi gas with spin-orbit coupling and adiabatic rotation
Lei Qiao(乔雷), Cheng Chi(迟诚). Chin. Phys. B, 2017, 26(12): 120304.
[10] Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy
H Farooq, M Sarfraz, Z Iqbal, G Abbas, H A Shah. Chin. Phys. B, 2017, 26(11): 110301.
[11] Charge transfer of He2+ with H in a strong magnetic field
Liu Chun-Lei (刘春雷), Zou Shi-Yang (邹士阳), He Bin (何斌), Wang Jian-Guo (王建国). Chin. Phys. B, 2015, 24(9): 093402.
[12] Spin excitation spectra of spin–orbit coupled bosons in an optical lattice
Li Ruo-Yan (李若言), He Liang (贺亮), Sun Qing (孙青), Ji An-Chun (纪安春), Tian Guang-Shan (田光善). Chin. Phys. B, 2015, 24(5): 056701.
[13] The effect of s-wave scattering length on self-trapping and tunneling phenomena of Fermi gases in one-dimensional accelerating optical lattices
Jia Wei (贾伟), Dou Fu-Quan (豆福全), Sun Jian-An (孙建安), Duan Wen-Shan (段文山). Chin. Phys. B, 2015, 24(4): 040307.
[14] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui (王瑞), Zhang Cun-Xi (张存喜), Ji Qing-Shan (计青山). Chin. Phys. B, 2015, 24(3): 030305.
[15] The stability of a non-extensive relativistic Fermi system
Wang Hai-Tang(王海堂), Men Fu-Dian(门福殿), He Xiao-Gang(何晓刚), and Wei Qun-Mei(隗群梅) . Chin. Phys. B, 2012, 21(6): 060501.
No Suggested Reading articles found!