Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030306    DOI: 10.1088/1674-1056/19/3/030306
GENERAL Prev   Next  

A connection between the (G'/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation

Zhao Yin-Long (赵银龙), Liu Yin-Ping (柳银萍), and Li Zhi-Bin (李志斌)
Department of Computer Science, East China Normal University, Shanghai 200241, China
Abstract  Recently the (G'/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G'/G)-expansion method is a special form of the truncated Painlevé expansion method by introducing an intermediate expansion method. Then the generalized (G'/G)--(G'/G) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlevé expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the (G'/G)-expansion method.
Keywords:  (G'/G)-expansion method      truncated Painlevé expansion method      mKdV equation      traveling wave solutions  
Received:  01 March 2009      Revised:  22 May 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Key Basic Research Project of China (Grant No.~2004CB318000) and the National Natural Science Foundation of China (Grant No.~10771072).

Cite this article: 

Zhao Yin-Long (赵银龙), Liu Yin-Ping (柳银萍), and Li Zhi-Bin (李志斌) A connection between the (G'/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation 2010 Chin. Phys. B 19 030306

[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press) p70
[2] Li Y S 2002 Soliton and Integrable Systems (Shanghai: Shanghai Scientific and Technological Education Publishing House) p45
[3] Li Z B 2007 Traveling Wave Solutions of Nonlinear Mathematical Physics Equations (Beijing: Science Press) p2
[4] Conte R 1989 Phys. Lett. A 140 383
[5] Pickering A 1993 J. Phys. A Math. Gen. 26 4395
[6] Lou S Y 1998 Z. Naturforsch 53a 251
[7] Parkes E J and Duffy B R Comput. Phys. Commun. 98 288
[8] Fan E G 2000 Phys. Lett. A 277 212
[9] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett. A 289 69
[10] Wang M L and Zhou Y B 2003 Phys. Lett. A 318 84
[11] Wang M L and Li X Z 2005 Phys. Lett. A 343 48
[12] Wang M L and Li X Z 2005 Chaos, Solitons and Fractals 24 1257
[13] Wang M L, Li X Z and Zhang J L 2008 Phys. Lett. A 372 417
[14] Wang M L, Zhang J L and Li X Z 2008 Appl. Math. Comput. 206 321
[15] Bekir A 2008 Phys. Lett. A 372 3400
[16] Li W A, Chen H and Zhang G C 2009 Chin. Phys. B 18 400
[17] Wang M L 1995 Phys. Lett. A 199 169
[18] Wang M L, Zhou Y B and Li Z B 1996 Phys. Lett. A 216 67
[19] Conte R 1998 The Painlevé Property, One Centrury Later (Berlin: Springer-Verlag) p86
[20] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[21] Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)
[22] Wu H Y, Zhang L, Tan Y K and Zhou X T 2008 Acta Phys. Sin. 57 3312 (in Chinese)
[1] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[2] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[3] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[4] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[5] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[6] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[7] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[8] Multiple flux difference effect in the lattice hydrodynamic model
Wang Tao(王涛), Gao Zi-You(高自友), and Zhao Xiao-Mei(赵小梅) . Chin. Phys. B, 2012, 21(2): 020512.
[9] Riemann theta function periodic wave solutions for the variable-coefficient mKdV equation
Zhang Yi (张翼), Cheng Zhi-Long (程智龙), Hao Xiao-Hong (郝晓红). Chin. Phys. B, 2012, 21(12): 120203.
[10] The time-dependent Ginzburg–Landau equation for the two-velocity difference model
Wu Shu-Zhen(吴淑贞), Cheng Rong-Jun(程荣军), and Ge Hong-Xia(葛红霞) . Chin. Phys. B, 2011, 20(8): 080509.
[11] Approximate analytic solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled mKdV equation
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江), Wu Di (吴迪). Chin. Phys. B, 2010, 19(8): 080204.
[12] General solution of the modified Korteweg-de-Vries equation in the lattice hydrodynamic model
Yu Han-Mei(余寒梅), Cheng Rong-Jun(程荣军), and Ge Hong-Xia(葛红霞). Chin. Phys. B, 2010, 19(10): 100512.
[13] Approximate direct reduction method: infinite series reductions to the perturbed mKdV equation
Jiao Xiao-Yu(焦小玉) and Lou Sen-Yue(楼森岳). Chin. Phys. B, 2009, 18(9): 3611-3615.
[14] Modified KdV equation for solitary Rossby waves with $\beta$ effect in barotropic fluids
Song Jian(宋健) and Yang Lian-Gui(杨联贵). Chin. Phys. B, 2009, 18(7): 2873-2877.
[15] Application of higher-order KdV--mKdV model with higher-degree nonlinear terms to gravity waves in atmosphere
Li Zi-Liang(李子良). Chin. Phys. B, 2009, 18(10): 4074-4082.
No Suggested Reading articles found!