Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 029201    DOI: 10.1088/1674-1056/19/2/029201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams

Ji Xiao-Ling (季小玲) and Pu Zheng-Cai (蒲政才)
College of Physics, Sichuan Normal University, Chengdu 610068, China
Abstract  Based on a recently formulated unified theory of coherence and polarization, a method is described to study turbulence-induced changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic beams on propagation. The electromagnetic Gaussian Schell-model beam is taken as a typical example of partially coherent electromagnetic beams, and the closed-form expressions for the degree of polarization, the degree of coherence and the spectrum of electromagnetic Gaussian Schell-model beams propagating through atmospheric turbulence are derived in the quadratic approximation of Rytov's phase structure function. Some interesting results are obtained, which are illustrated by numerical examples and are explained in physics.
Keywords:  unified theory of coherence and polarization      turbulence      partially coherent electromagnetic beams      degree of polarization      degree of coherence      spectrum  
Received:  25 March 2009      Revised:  06 August 2009      Accepted manuscript online: 
PACS:  42.68.Mj (Scattering, polarization)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.68.Bz (Atmospheric turbulence effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60778048).

Cite this article: 

Ji Xiao-Ling (季小玲) and Pu Zheng-Cai (蒲政才) Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams 2010 Chin. Phys. B 19 029201

[1] Fante R L 1985 Progress in OpticsXXII}: Wave Propagationin Random Media: a Systems Approach} Chap. VI edited by Wolf E(Amsterdam: Elsevier)
[2] Andrews L C and Phillips R L 1998 Laser Beam Propagationthrough Random Media (Bellingham: SPIE Press)
[3] Wu J 1990 J. Mod. Opt. 37 671
[4] Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[5] Shirai T, Dogariu A and Wolf E 2003 J. Opt. Soc. Am. A 20 1094
[6] Ji X L, Huang T X and Lü B D 2006 Acta Phys. Sin. 55 978 (in Chinese)
[7] Zhang E T, Ji X L and Lü B D 2009 Chin. Phys. B 18 571
[8] Roychowdhury H and Wolf E 2004 Opt. Commun. 241 }11
[9] Ji X L, Zhang E T and Lü B D 2006 Opt. Commun. 259 1
[10] Lu W, Liu L, Sun J, Yang Q and Zhu Y 2007 Opt. Commun. 271 1
[11] Chen X W, Tang M Y and Ji X L 2008 Acta Phys. Sin. 57 2607 (in Chinese)
[12] Wolf E 2003 Phys. Lett. A 312 263
[13] Wolf E 2003 Opt. Lett. 28 1078
[14] Roychowdhury H, Ponomarenko S A and Wolf E 2005 J. Mod.Opt. 52 1611
[15] Korotkova O, Salem M and Wolf E 2004 Opt. Commun. 23 3 225
[16] Salem M, Korotkova O, Dogariu A and Wolf E 2004 Waves inRandom Media 14513
[17] Wang S C H and Plonus M A 1979 J. Opt. Soc. Am. 69 1297
[18] Eyyubo?lu H T, Altay S and Baykal Y 2004 Opt. Commun. 245 37
[19] Leader J C 1978 J. Opt. Soc. Am. 68 175
[20] Cai Y and He S 2006 Opt. Express 141353
[21] Friberg A T and Turunen J 1988 J. Opt. Soc. Am. A 5 713
[22] Gbur G, Visser T D and Wolf E 2002 Phys. Rev. Lett. 88 013901
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[4] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[7] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[8] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[9] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[10] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[11] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[12] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[13] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[14] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[15] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
No Suggested Reading articles found!