Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 027302    DOI: 10.1088/1674-1056/19/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunneling current of the Coulomb-coupled quantum dots embedded in n-n junction

Yan Wei-Xian(阎维贤)a), Zhao Ya-Ping(赵亚平)a), Wen Yu-Bing(温玉兵)a), Li Xiu-Ping(李秀平)a), Xu Li-Ping(许丽萍)b), and Gong Jian-Ping(宫建平)c)
a College of Physics and Electronics, Shanxi University, Taiyuan 030006, China; b Department of Physics, North University of China, Taiyuan 030051, China; c Department of Physics, Jinzhong University, Yuci 030600, Shanxi Province, China
Abstract  Taking account of the electron--electron (hole) and electron--hole interactions, the tunneling processes of the main quantum dot (QD) Coulomb-coupled with a second quantum dot embedded in n--n junction have been investigated. The eighteen resonance mechanisms involved in the tunneling processes of the system have been identified. It is found that the tunneling current depends sensitively on the electron occupation number in the second quantum dot. When the electron occupation number in the second dot is tiny, both the tunneling current peaks and the occupation number plateaus in the main QD are determined by the intra-resonance mechanism. The increase of the electron occupation number in the second dot makes the inter-resonance mechanism participate in the transport processes. The competition between the inter and intra resonance mechanisms persists until the electron occupation number in the second dot reaches around unity, leading to the consequence that the inter-resonance mechanisms completely dominate the tunneling processes.
Keywords:  single-electron tunneling      exciton complexes      quantum dots  
Received:  27 April 2009      Revised:  22 June 2009      Accepted manuscript online: 
PACS:  73.63.Kv (Quantum dots)  
  73.40.Gk (Tunneling)  
  71.35.-y (Excitons and related phenomena)  
  73.21.La (Quantum dots)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60776062), the National Fundamental Fund of Personnel Training (Grant No. J0730317), and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2008011001-1 and 2008011001-2).

Cite this article: 

Yan Wei-Xian(阎维贤), Zhao Ya-Ping(赵亚平), Wen Yu-Bing(温玉兵), Li Xiu-Ping(李秀平), Xu Li-Ping(许丽萍), and Gong Jian-Ping(宫建平) Tunneling current of the Coulomb-coupled quantum dots embedded in n-n junction 2010 Chin. Phys. B 19 027302

[1] Jacak L, Hawrylak P and Wojs A 1998 Quantum Dots(Berlin: Springer-Verlag)
[2] Petroff P M, Lorke A and Imamoglu A 2001 Phys.Today 5446
[3] Bhattacharya P, Ghosh S and Stiff-Roberts A D 2007 Proceedings of the IEEE 95 1723
[4] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[5] Ouyang M and Awschalom D D 2003 Science 301 1074
[6] Liu K, Ding H L, Zhang X G, Yu L W, Huang X F and Chen K G 2008 Acta Phys. Sin. 57 7052 (in Chinese)
[7] Xu T N, Wu H Z and Si J X 2008 Acta Phys. Sin. 57 2574 (in Chinese)
[8] Huang S S, Niu Z C, Zhan F, Ni H Q, Zhao H, Wu D H and Sun Z2008 Chin. Phys. B 17 1674
[9] Goldhaber-Gordon D, Montemerlo M S, Love J C, Opiteck G J and EllenbogenJ 1997 Proceedings of the IEEE 85 521
[10] Kuo David M T and Chang Y C 2005 Phys. Rev. B 72 085334
[11] Findels F, Baier M, Duijs E, Beham E, Bichler M, Zrenner A, HohenesterU and Molinari E 2001 Kramer E B (ed.) Adv. in Solid StatePhys. 41 63
[12] Chen G L, Kuo David M T, Lai W T and Li P W 2007 Nanotechnology 18 475402
[13] Danckwerts J, Ahn K J, F?rstner J and Knorr A 2006 Phys. Rev. B 7 3 165318
[14] F?lt S, Atatüre M, Türeci H E, Zhao Y,Badolato A and Imamoglu A 2008 Phys. Rev. Lett. 100106401
[15] Hawrylak P, Sheng W and Cheng S J 2004 ActaPhys. Pol. A 106 403
[16] Cheng S J, Sheng W and Hawrylak P 2003 Phys.Rev. B 68 235330
[17] Ediger M, Bester G, Gerardot B D, Badolato A, Petroff P M, Karrai K, ZungerA and Warburton R J 2007 Phys. Rev. Lett. 98 036808
[18] Kuo David M T and Chang Y C 2007 Phys. Rev. Lett. 99 086803
[19] Chang Y C and Kuo David M T 2008 Phys. Rev. B 77 245412
[20] Landin L, Miller M S, Pistol M E, Pryor C E and Samuelson L 1998 Science 280 262
[21] Chu W D, Duan S Q and Zhu J L 2007 Appl.Phys. Lett. 90 222102
[22] Shabaev A, Efros Al L, Gammon D andMerkulov I A 2003 Phys. Rev. B 68 201305(R)
[23] Chen P, Piermarocchi C, Sham L J,Gammon D and Steel D G 2004 Phys. Rev. B 69 075320
[24] Szafran B, Barczyk E, Peeters F M andBednarek S 2008 Phys. Rev. B 77 115441
[25] Michler P, Kiraz A, Becher C, Schoenfeld W V,Petroff P M, Zhang L, Hu E and Imamoglu A 2000 Science 290 2282
[26] Santori C, Pelton M, Solomon G, Dale Y andYamamoto Y 2001 Phys. Rev. Lett. 86 1502
[27] Yang X, Xiang S H and Song K H 2008 Chin. Phys. B 17 435
[28] Li X Q and Yan Y J 2002 Appl. Phys. Lett. 81 168
[29] Nazir A, Lovett B W andBriggs G A D 2004 Phys. Rev. A 70 052301
[30] Wen Y B and Yan W X 2008 Phys. Rev. A 77 052332
[31] van der Wiel W G, De Franceschi S, Elzerman J M,Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod.Phys. 751
[32] Jeong H, Chang A M and Melloch M R 2001 Science 29 3 2221
[33] Chen M L and Wang S J 2007 Chin. Phys. 16 2101
[34] Chen M L and Wang S J 2007 Chin. Phys. 16 2096
[35] Sun K W and Xiong S J 2006 Chin. Phys. 15 828
[36] Yan C H, Wu S Q, Huang R and Sun W L 2008 Chin. Phys. B 17 296
[37] Bai A H, Wu S Q and Hou T 2008 Chin. Phys. Lett. 25 3028
[38] Yang F B, Wu S Q and Sun W L 2007 Chin. Phys. Lett. 24 2056
[39] Lü R and Liu Z R 2007 Chin. Phys. Lett. 24 195
[40] Kuo David M T and Chang Y C 2004 Phys. Rev. B 69041306(R)
[41] Heitz R, Born H, Guffarth F, Stier O, Schliwa A, Hoffmann A and Bimberg D 2001 Phys. Rev. B 64 241305(R)
[42] Jauho A P, Wingreen N S and Meir Y 1994 Phys.Rev. B 50 5528
[43] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev.Lett. 70 2601
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[14] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[15] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
No Suggested Reading articles found!