Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127202    DOI: 10.1088/1674-1056/19/12/127202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-polarization-dependent transport in a quantum dot array coupled with an Aharonov–Bohm ring

Wang Rui(王瑞)a), Kong Ling-Min(孔令民)a), Zhou Yun-Qing(周运清)a), Zhang Cun-Xi(张存喜)a), and Xing Zhi-Yong(邢志勇)b)
a Department of Physics, Zhejiang Ocean University, Zhoushan 316000, China; b Xiamen Ocean Vocational College, Xiamen 361012, China
Abstract  In this paper the quantum transport in a dot-array coupled with an Aharonov–Bohm (AB) ring is investigated via single-band tight-binding Hamiltonian. It is shown that the output spin current is a periodic function of the magnetic flux in the quantum unit $\varPhi_0$. The resonance positions of the total transmission probability do not depend on the size of the AB ring but the electronic spectrum. Moreover, the persistent currents in the AB ring is also spin-polarization dependent and different from the isolated AB ring where the persistent current is independent of spin polarization.
Keywords:  spin-polarization      transmission      AB ring      current  
Received:  12 March 2010      Revised:  03 August 2010      Accepted manuscript online: 
PACS:  72.25.-b (Spin polarized transport)  
  73.21.La (Quantum dots)  
  73.23.Ra (Persistent currents)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10947163 and 10947164).

Cite this article: 

Wang Rui(王瑞), Kong Ling-Min(孔令民), Zhou Yun-Qing(周运清), Zhang Cun-Xi(张存喜), and Xing Zhi-Yong(邢志勇) Spin-polarization-dependent transport in a quantum dot array coupled with an Aharonov–Bohm ring 2010 Chin. Phys. B 19 127202

[1] Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, Gallagher W J and Kleinsasser A 1991 Phys. Rev. Lett. 67 3578
[2] Mailly D, Chapelier C and Benoit A 1993 Phys. Rev. Lett. 70 2020
[3] Keyser U F, Fühner C, Borck S and Hauh R J 2002 Semicond. Sci. Technol. 17 L22
[4] Orellana P A, Dominguez-Adame F, Gomez I and Ladron de Guevara M L 2003 Phys. Rev. B 67 085321
[5] Fuhrer A, Lüscher S, Ihn T, Heinzel T, Ensslin K, Wegscheiner W and Bichler M 2001 Nature (London) 413 385
[6] Yanson A I, Rubio-Bpllinger G, van den Brom H E, Agra "hit N and van Ruitenbeek J M 1998 Nature (London) 395 780
[7] Waugh F R, Berry M J, Crouch C H, Livermore C, Mar D J, Westervelt R M, Campman K L and Gossard A C 1996 Phys. Rev. B 53 1413
[8] Midori Kawamura, Neelima Paul, Vasily Cherepanov and Bert Voigtlanänder 2003 Phys. Rev. Lett. 91 096102
[9] Wang J M, Wang R, Zhang Y P and Liang J Q 2007 Chin. Phys. 16 2069
[10] Wang J M, Wang R and Liang J Q 2007 Chin. Phys. 16 2075
[11] Gao Y F, Zhang Y P and Liang J Q 2005 Chin. Phys. 14 196
[12] Kirczenow G 1989 Phys. Rev. B 39 10452
[13] Ulloa S E, Castavno E and Kirczenow G 1990 Phys. Rev. B 41 12350
[14] Brum J A 1991 Phys. Rev. B 43 12082
[15] Tamura H and Ando T 1991 Phys. Rev. B 44 1792
[16] Li Z J 2005 Chin. Phys. 14 2100
[17] Thouless D J and Kirkpatrick S 1981 J. Phys. C 14 235
[18] Lee P A and Fisher D S 1981 Phys. Rev. Lett. 47 882
[19] Schweizer L, Kramer B and Mackinnon A 1984 J. Phys. C 17 4111
[20] Schweizer L, Kramer B and Mackinnon A 1985 Z. Phys. B: Conden. Matter 59 379
[21] Mackinnon A 1985 Z. Phys. B: Conden. Matter 59 385
[22] Ando T 1991 Phys. Rev. B 44 8017
[23] Wang B G, Wang J and Guo H 2003 Phys. Rev. B 67 92408
[24] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[25] Xu H Q 2002 Phys. Rev. B 66 165305
[26] Büttiker M 1985 Phys. Rev. B 32 1846
[27] Jayanavar A M and Singha Deo P 1994 Phys. Rev. B 49 13685
[28] Shi J R and Gu B Y 1997 Phys. Rev. B 55 4703
[29] D'Amato Jorge L, Pastawski Horario M and Weisz Juan F 1989 Phys. Rev. B 39 3554
[30] Liu Y Y and Hui P M 1998 Phys. Rev. B 57 12994
[31] Cheung Ho-Fai and Riedel Eberhars K 1989 Phys. Rev. B 40 9498
[32] Chen Y, Xiong S J and Nagelou S R 1997 Phys. Rev. B 56 4778
[33] Carini J P, Muttalib K A and Nagel S R 1984 Phys. Rev. Lett. 53 102
[34] Orellana Pedro A, Lara G A and Anda Enrique V 2002 Phys. Rev. B 65 193307
[35] Liang J Q, Peng F and Ding X X 1995 Phys. Lett. A 201 369
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[4] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[10] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[13] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[14] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[15] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
No Suggested Reading articles found!