Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124217    DOI: 10.1088/1674-1056/19/12/124217
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Influences of semiconductor laser on fibre-optic distributed disturbance sensor based on Mach–Zehnder interferometer

Liang Sheng(梁生)a†), Zhang Chun-Xi(张春熹)a), Lin Bo(蔺博)b), Lin Wen-Tai(林文台)a), Li Qin(李勤)a), Zhong Xiang(钟翔)a), and Li Li-Jing(李立京)a)
a School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China; b Photonics Research Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
Abstract  This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach–Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.
Keywords:  fibre-optic distributed sensor      semiconductor laser      narrow linewidth laser      fibre-optic interferometric sensor  
Received:  31 May 2010      Revised:  10 June 2010      Accepted manuscript online: 
PACS:  07.60.Ly (Interferometers)  
  07.60.Vg (Fiber-optic instruments)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Mi (Dynamical laser instabilities; noisy laser behavior)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.81.Gs (Birefringence, polarization)  

Cite this article: 

Liang Sheng(梁生), Zhang Chun-Xi(张春熹), Lin Bo(蔺博), Lin Wen-Tai(林文台), Li Qin(李勤), Zhong Xiang(钟翔), and Li Li-Jing(李立京) Influences of semiconductor laser on fibre-optic distributed disturbance sensor based on Mach–Zehnder interferometer 2010 Chin. Phys. B 19 124217

[1] Chtcherbakov A A, Swart P L, Spammer S J and Lacquet B M 1998 The Fourth Pacific Northwest Fibre Optic Sensor Workshop (Troutdale, USA May 1998) p. 60
[2] Chtcherbakov A A, Swart P L and Spammer S J 1998 Appl. Opt. 37 3432
[3] Spammer S J, Swart P L and Chtcherbakov A A 1997 J. Lightwave Technol. 15 972
[4] Kondrat M, Szustakowski M, Palka N, Ciurapi'nski W and .Zyczkowski M 2007 Opto-Electron. Rev. 15 127
[5] Chtcherbakov A A and Swart P L 1998 J. Lightwave Technol. 16 1404
[6] Udd E 1996 Smart Structures and Materials 1996: Smart Systems for Bridges, Structures and Highways (San Diego, USA Feb. 1996) p. 210
[7] Ronnekleiv E 1997 Appl. Opt. 36 2076
[8] McAulay A D and Wang J 2004 Proc. SPIE 5435 p. 114
[9] Fang X J 1996 J. Lightwave Technol. 14 2250
[10] Szustakowski M, Jaroszewicz L R and Kiezun A 1994 Interferometry '94: Interferometric Fiber Sensing (Warsaw, Poland May 1994) p. 84
[11] Hoffman P R and Kuzyk M G 2004 J. Lightwave Technol. 22 494
[12] Wu D F, Zhang T Z and Jia B 2008 Microwave Opt. Technol. Lett. 50 1608
[13] Lin W W 2004 Opt. Eng. 43 278
[14] Russell S J, Brady K R C and Dakin J P 2001 J. Lightwave Technol. 19 205
[15] Spammer S J, Swart P L and Chtcherbakov A A 1998 Microwave Opt. Technol. Lett. 17 170
[16] Fang X J 1996 Opt. Lett. 21 444
[17] Spammer S J, Swart P L and Booysen A 1996 Appl. Opt. 34 3200
[18] Liang S, Zhang C X, Lin W T, Li L J, Li C, Feng X J and Lin B 2009 Opt. Lett. 34 1858
[19] Sun Q Z, Liu D M and Wang J 2007 Acta Phys. Sin. 56 5903 (in Chinese)
[20] Bartolo1 R E, Tveten A and Kirkendal C K 2009 20th International Conference on Optical Fibre Sensors (Edinburgh, UK Oct. 2009) p. 750370
[21] Alalusi M, Brasil P, Lee S, Mols P, Stolpner L, Mehnert A and Li S 2009 Proc. SPIE 7316 73160X
[22] Bartolo R E and Kirkendall C K 2006 Proc. SPIE 6133 p. 61330I
[23] Daniel L, Martin V L and Carlos F 2007 International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices – NUSOD'07 (Newark, DE Sep. 2007) p. 73
[24] Fatadin I, Ives D and Wicks M 2006 IEEE J. Quantum Electron. 42 934
[25] Sato T 2004 J. Lightwave Technol. 22 1782
[26] Boukari O, Hassine L and Bouchriha H 2010 Opt. Commun. 283 1880
[27] Charles H H 1982 IEEE J. Quantum Electron. QE-18 259
[28] Kikuchi K 1989 IEEE J. Quantum Electron. 25 684
[29] Ishida O 1990 IEEE Photon. Technol. Lett. 2 784
[30] Cliche J F, Allard M and T^etu M 2006 Proc. SPIE 6216 p. 62160C
[31] Charles C H 1986 J. Lightwave Technol. LT-4 298
[32] Turner L D, Weber K P, Hawthorn C J and Scholten R E 2002 Opt. Commun. 201 391
[33] Ferreira M F S, Rocha J R F and Pinto J L 1992 IEEE J. Quantum Electron. 28 833
[34] Agrawal G P 1989 IEEE Photon. Technol. Lett. 1 212
[35] Guo C Z and Huang Y Z 1989 Acta Phys. Sin. 38 699 (in Chinese)
[36] Liu C, Ge J H and Chen J 2006 Acta Phys. Sin. 55 5211 (in Chinese)
[37] Tian X T, Li Y M, Liu Q and Zhang K S 2009 Chin. Phys. B 18 2324
[38] Zhang Z G, Guo S X, Gao F L, Yu S Y and Li X Y 2009 Acta Phys. Sin. 58 2772 (in Chinese)
[39] Chen D Y and Wang Z L 2009 Acta Phys. Sin. B 58 1403 (in Chinese)
[40] Bager L 1990 IEEE Photon. Technol. Lett. 2 899
[41] Ohtsij M, Teramachi Y, Otsuka Y and Osaki A 1986 IEEE J. Quantum Electron. QE-22 535
[42] Heumier T A and Carlsten J L 1993 IEEE J. Quantum Electron. 29 2756
[43] Stephan G M, Tam T T, Blin S, Besnard P and Tetu M 2005 Phys. Rev. A 71 043809
[44] Fermigier B and T^etu M 1998 Proc. SPIE 3415 p. 164
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[3] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[4] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[5] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[6] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[7] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[8] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[9] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[10] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[11] Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb
Jian-Hong Wan(万剑宏), Chang Liu(刘畅), Yan-Hui Wang(王延辉). Chin. Phys. B, 2016, 25(4): 044204.
[12] Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb
Fang Su (方苏), Jiang Yan-Yi (蒋燕义), Chen Hai-Qin (陈海琴), Yao Yuan (姚远), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生). Chin. Phys. B, 2015, 24(7): 074202.
[13] Graded doping low internal loss 1060-nm InGaAs/AlGaAsquantum well semiconductor lasers
Tan Shao-Yang (谭少阳), Zhai Teng (翟腾), Zhang Rui-Kang (张瑞康), Lu Dan (陆丹), Wang Wei (王圩), Ji Chen (吉晨). Chin. Phys. B, 2015, 24(6): 064211.
[14] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼). Chin. Phys. B, 2015, 24(5): 054207.
[15] Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(2): 024211.
No Suggested Reading articles found!