Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 123501    DOI: 10.1088/1674-1056/19/12/123501
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Spectroscopic parameters and molecular constants of HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+) isotope molecules

Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋)
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  The potential energy curve (PEC) of HI(X1Σ+) molecule is studied using the complete active space self-consistent field method followed by the highly accurate valence internally contracted multireference configuration interaction approach at the correlation-consistent basis sets, aug-cc-pV6Z for H and aug-cc-pV5Z-pp for I atom. Using the PEC of HI(X1Σ+), the spectroscopic parameters of three isotopes, HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+), are determined in the present work. For the HI(X1Σ+), the values of D0, De, Re, ωe, ωeχe, αe and Be are 3.1551 eV, 3.2958 eV, 0.16183 nm, 2290.60 cm-1, 40.0703 cm-1, 0.1699 cm-1 and 6.4373 cm-1, respectively; for the DI (X1Σ+), the values of D0, De, Re, ωe, ωeχe, αe and Be are 3.1965 eV, 3.2967 eV, 0.16183 nm, 1626.8 cm-1, 20.8581 cm-1, 0.0611 cm-1 and 3.2468 cm-1, respectively; for the TI (X1Σ+), the values of D0, De, Re, ωe, ωeχe, αe and Be are of 3.2144 eV, 3.2967 eV, 0.16183 nm, 1334.43 cm-1, 14.0765 cm-1, 0.0338 cm-1 and 2.1850 cm-1, respectively. These results accord well with the available experimental results. With the PEC of HI(X1Σ+) molecule obtained at present, a total of 19 vibrational states are predicted for the HI, 26 for the DI, and 32 for the TI, when the rotational quantum number J  is equal to zero (J = 0). For each vibrational state, vibrational level G(ν), inertial rotation constant Bν  and centrifugal distortion constant Dν  are determined when J = 0 for the first time, which are in excellent agreement with the experimental results.
Keywords:  isotope effect      potential energy curve      spectroscopic parameter      molecular constant  
Received:  04 May 2010      Revised:  19 June 2010      Accepted manuscript online: 
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.30.Gs (Hyperfine interactions and isotope effects)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
  33.20.Sn (Rotational analysis)  
  33.20.Tp (Vibrational analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874064), and the Program for Science and Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008).

Cite this article: 

Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋) Spectroscopic parameters and molecular constants of HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+) isotope molecules 2010 Chin. Phys. B 19 123501

[1] Wright S A and McDonald J D 1994 J. Chem. Phys. 101 238
[2] Meuciarová K, Cantrel L and uCrnuvsk I 2008 it Collect. Czech. Chem. Commun. 73 1340
[3] Naudé S M and Verleger H 1950 Proc. Phys. it Soc. 63 470
[4] Niay P, Bernage P, Coquant C and Fayt A 1978 J. Mol. Spectrosc. 72 168
[5] Lucia D F C, Helminger P and Gordy W 1971 Phys. Rev. A 3 1849
[6] Hurlock S C, Alexander R M, Rao K N, Derska S N, Pugh L A and R K Narahari 1971 J. Mol. Spectrosc. 37 373
[7] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4 Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p. 325
[8] Wilkinson P G 1963 Astrophys. J. 138 778
[9] Coxon J A and Hajigeorgiou P G 1991 J. Mol. it Spectrosc. 150 1
[10] Ungemach S R, Schaefer H F and Liu B 1977 J. Mol. it Spectrosc. 66 99
[11] Barandiarán Z and Seijo L 1986 J. Chem. Phys. 84 1941
[12] Matsuoka O 1992 J. Chem. Phys. 97 2271
[13] Seijo L 1995 J. Chem. Phys. 102 8078
[14] Lee S Y and Lee Y S 1991 Chem. Phys. Lett. 187 302
[15] Styszy'nski J 2000 Chem. Phys. Lett. 317 351
[16] Styszy'nski J and Kobus J 2003 Chem. Phys. it Lett. 369 441
[17] Haiduke R L A, Comar M and da Silva A B F 2006 Chem. Phys. 331 173
[18] Visscher L, Styszy nski J and Nieuwpoort W C 1996 J. it Chem. Phys. 105 1987
[19] Al-Saidi W A 2008 J. Chem. Phys. 129 064316
[20] Chapman D A, Balasubramanian K and Lin S H 1987 J. it Chem. Phys. 87 5325
[21] Kellö V and Sadlej A J 1990 J. Chem. Phys. 93 8122
[22] Saue T, Faegri K and Gropen O 1996 Chem. Phys. it Lett. 263 360
[23] Feller D, Peterson K A, de Jong W A and Dixon D A 2003 J. Chem. Phys. 118 3510
[24] Alekseyev A B, Liebermann H, Kokh D B and Buenker R J 2000 J. Chem. Phys. 113 6174
[25] Martin J M L and Sundermann A 2001 J. Chem. Phys. 114 3408
[26] Hirata S, Yanai T, Harrison R J, Kamiya M and Fan P D 2007 J. Chem. Phys. 126 024104
[27] Dunning T H 1984 J. Phys. Chem. 88 2469
[28] Schwerdtfeger P, Szentp'aly L V, Vogel K, Silberbach H, Stoll H and Preuss H 1986 J. Chem. Phys. 84 1606
[29] Schwerdtfeger P, Szentp'aly L V, Stoll H and Preuss H 1987 J. Chem. Phys. 87 510
[30] Werner H J, Reinsch E A and Rosmus P 1981 Chem. it Phys. Lett. 78 311
[31] Watanabe Y and Matsuoka O 1998 J. Chem. Phys. 109 8182
[32] Hennum A C, Halkier A and Klopper W 2001 J. Mol. it Struct. 599 153
[33] Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11113
[34] Hirata S, Yanai T, de Jong W A, Nakajima T and Hirao K 2004 J. Chem. Phys. 120 3297
[35] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[36] Knowles P J and Werner H J 1988 Chem. Phys. it Lett. 145 514
[37] Peterson K A, Woon D E and Dunning T H 1994 J. Chem. Phys. 100 7410
[38] Peterson K A, Kendall R A and Dunning T H 1993 J. Chem. Phys. 99 1930
[39] Dunning T H 1989 J. Chem. Phys. 90 1007
[40] Krogh J W, Lindh R, Malmqvist P AA, Roos B O, Veryazov V and Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)
[41] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio program
[42] Shi D H, Zhang J P, Sun J F, Liu Y F and Zhu Z L 2009 it Acta Phys. Sin. 58 5329 (in Chinese)
[43] Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 Chin. it Phys. B 19 013501
[44] Gao F, Yang C L, Hu Z Y and Wang M S 2007 Chin. it Phys. 16 3668
[45] Zhang L, Yang C L and Ren T Q 2008 Mol. Phys. 106 615
[46] Wang X Q, Yang C L, Su T and Wang M S 2009 Acta it Phys. Sin. 58 6873 (in Chinese)
[47] Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 it Chin. Phys. B 19 053401
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[3] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[4] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[5] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[6] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[7] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[8] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[9] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[10] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[11] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[12] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[13] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[14] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[15] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
No Suggested Reading articles found!