Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 123102    DOI: 10.1088/1674-1056/19/12/123102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study on the complexes of He, Ne and Ar

Tong Xiao-Fei(童小菲), Yang Chuan-Lu(杨传路), Xiao Jing(肖静), Wang Mei-Shan(王美山), and Ma Xiao-Guang(马晓光)
School of Physics, Ludong University, Yantai 264025, China
Abstract  This paper investigates the effect of basis sets through the potential energy curves (PECs) of six rare gas complexes He2, Ne2, Ar2, He–Ne, He–Ar, and Ne–Ar. The coupled cluster singles and doubles method with perturbative treatment of triple excitations, doubly augmented basis sets of d-aug-cc-pVQZ, bond functions, and basis set superposition errors are employed. The diffuse function is more effective than the polarization function on describing the dissociation energy. The PECs are fitted into analytical potential energy functions (APEFs) using three expressions. It is found that all the expressions are suitable for describing the complexes of rare gases. Based on these APEFs, the spectroscopic parameters are calculated and the results are compared with the theoretical and experimental data available in the literature.
Keywords:  potential energy curve      analytical potential energy function      spectroscopic parameter  
Received:  09 March 2010      Revised:  10 April 2010      Accepted manuscript online: 
PACS:  31.15.bw (Coupled-cluster theory)  
  31.15.xp (Perturbation theory)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  33.15.Fm (Bond strengths, dissociation energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674114 and 10974078).

Cite this article: 

Tong Xiao-Fei(童小菲), Yang Chuan-Lu(杨传路), Xiao Jing(肖静), Wang Mei-Shan(王美山), and Ma Xiao-Guang(马晓光) Theoretical study on the complexes of He, Ne and Ar 2010 Chin. Phys. B 19 123102

[1] Weber T and Neusser H J 1991 J. Chem. Phys. 94 7689
[2] Leutwyler S and Bösiger 1990 J. Chem. Rev. 90 489
[3] Haley T P and Cybulski S M 2003 J. Chem. Phys. 119 5487
[4] Jahnke T, Czasch A, Schöffler M, Schössler S, Käsz M, Titze J, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Schmidt L Ph H, Weber Th, Schmidt-Böcking H, Ueda K and Dörner R 2007 Phys. Rev. Lett. 99 153401
[5] Gühr M, Bargheer M, Fushitani M, Kiljunen T and Schwentner N 2007 Phys. Chem. Chem. Phys. 9 779
[6] Ray D, Ulrich B, Bocharova I, Maharjan C, Ranitovic P, Gramkow B, Magrakvelidze M, De S, Litvinyuk I V, Le A T, Morishita T, Lin C D, Paulus G G and Cocke C L 2008 Phys. Rev. Lett. 100 143002
[7] Brahms N, Newman B, Johnson C, Greytak T, Kleppner D and Doyle J 2008 Phys. Rev. Lett. 101 103002
[8] Patterson D, Rasmussen J and Doyle J M 2009 New J. Phys. 11 055018
[9] Colbourn E A and Douglas A E 1976 J. Chem. Phys. 65 1741
[10] Tanaka Y, Walker W C and Yoshino K 1978 J. Chem. Phys. 70 380
[11] Frenkel D and McTague J P 1979 J. Chem. Phys. 70 2695
[12] Dehmer P M 1982 J. Chem. Phys. 76 1263
[13] Herman P R, LaRocque P E and Stoicheff B P 1988 J. Chem. Phys. 89 4535
[14] Keil M , Danielson L J and Dunlop J P 1991 J. Chem. Phys. 94 296
[15] Wüest A and Merkt F 2003 J. Chem. Phys. 118 8807
[16] Grabow J U, Pine A S, Fraser G T, Lovas F J, Suenram R D, Emilsson T, Arunan E and Gutowsky H S 1995 J. Chem. Phys. 102 1181
[17] Korona T, Williams H L, Bukowski R, Jeziorski B and Szalewicz K 1997 J. Chem. Phys. 106 5109
[18] Partridge H and Stallcop J R 2001 J. Chem. Phys. 115 6471
[19] Tao F M and Pan Y K 1992 J. Chem. Phys. 97 4989
[20] Fern'andez B and Koch H 1998 J. Chem. Phys. 109 10255
[21] Slav'hivcek P S 2003 J. Chem. Phys. 119 2102
[22] Hättig C, Larsen H, Olsen J, Jorgensen P, Koch H, Fern'andez B and Rizzo A 1999 J. Chem. Phys. 111 10099
[23] Cybulski S M and Toczylowski R R 1999 J. Chem. Phys. 111 10520
[24] Haley T P and Cybulski S M 2003 J. Chem. Phys. 119 5478
[25] Tang K T and Toennies J P 1984 J. Chem. Phys. 80 3726
[26] Yang D D, Li P and Tang K T 2009 J. Chem. Phys. 131 154301
[27] Aziz R A and Slaman M J 1989 Chem. Phys. 130 187
[28] Murrell J N and Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 70 1552
[29] Yang C L, Zhang X and Han K L 2004 J. Mol. Struct. (THEOCHEM) 676 209
[30] Su T, Yang C L, Wang X Q, Bai F J and Wang M S 2009 Chem. Phys. Lett. 467 265
[31] Yang C L, Zhang X and Han K L 2004 J. Mol. Struct. (THEOCHEM) 678 183
[32] Zhang L, Yang C L and Ren T Q 2008 Mol. Phys. 106 615
[33] Yang C L, Gao F, Zhang X Y and Han K L 2005 J. Chem. Phys. 123 204308
[34] Gao F, Yang C L and Ren T Q 2006 J. Mol. Struct. (THEOCHEM) 758 81
[35] Bai F J, Yang C L, Qian Q and Zhang L 2009 Chin. Phys. B 18 549
[36] Yang C L, Zhu Z H, Wang R and Liu X Y 2001 J. Mol. Struct. (THEOCHEM) 548 47
[37] Wang X Q, Yang C L, Su T and Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)
[38] Gao F, Yang C L and Zhang X Y 2007 Acta Phys. Sin. 56 2547 (in Chinese)
[39] Huxley P, Knowles P B, Murrell J N and Watts J D 1984 J. Chem. Soc. Faraday Trans. 80 1349
[40] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, et al. MOLPRO package
[41] Dawning-4000A is a large parallel computer containing 134 CPUs (AMD Opteron 64-bit 1.8 GHZ) in Ludong University. It is based on TURBO LINUX8.0 and implements with MOLPRO 2002, Gaussian 03, MOLCAS 5.0 and so on
[42] Woon D E 1993 J. Chem. Phys. 100 2838
[43] Woon D E and Jr T H D 1994 J. Chem. Phys. 100 2975
[44] Boys S F and Bernardi F 1970 Mol. Phys. 19 553
[45] Koch H, Fern'andez B and Christiansen O 1997 J. Chem. Phys. 106 5109
[46] Thakkar J 1988 J. Chem. Phys. 89 2092
[47] Bishop D M and Pinpin 1993 Int. J. Quantum Chem. 45 349
[48] Aziz R A and Janzen A R 1995 Phys. Rev. Lett. 74 1586
[49] Tang K T and Toennies J P 1986 Z. Phys. D: At., Mol. Clusters 1 91
[50] Tang K T and Toennies J P 2003 J. Chem. Phys. 118 4976
[51] Yang C L, Huang Y J, Zhang X and Han K L 2003 J. Mol. Struct. (THEOCHEM) 625 289
[52] Janzen A R and Aziz R A 1997 J. Chem. Phys. 107 914
[53] Olgivie J F and Wang F Y H 1992 J. Mol. Struct. 273 277
[54] Olgivie J F and Wang F Y H 1993 J. Mol. Struct. 291 313
[55] Aziz R A 1993 J. Chem. Phys. 99 4518
[56] Huber K P and Herzberg G, ``Constants of Diatomic Molecules'' (data prepared by Gallagher J W and Johnson R D III) in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by Linstrom P J and Mallard W G, 2001, National Institute of Standards and Technology, Gaithersburg M D, 20899, http://webbook.nist.gov.
[57] Tanaka Y and Yoshino K 1970 J. Chem. Phys. 53 2012
[58] Tao J and Perdew J P 2005 J. Chem. Phys. 122 114102
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[3] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[4] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[5] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[6] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[7] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[8] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[9] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[10] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[11] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[12] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[13] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[14] Accurate spectroscopic constants of the lowest two electronic states in S2 molecule with explicitly correlated method
Changli Wei(魏长立), Xiaomei Zhang(张晓美), Dajun Ding(丁大军), Bing Yan(闫冰). Chin. Phys. B, 2016, 25(1): 013102.
[15] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
No Suggested Reading articles found!