Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 120507    DOI: 10.1088/1674-1056/19/12/120507
GENERAL Prev   Next  

Dynamic analysis of a new chaotic system with fractional order and its generalized projective synchronization

Niu Yu-Jun(牛玉军), Wang Xing-Yuan(王兴元), Nian Fu-Zhong(年福忠), and Wang Ming-Jun(王明军)
School of Electronic & Information Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.
Keywords:  dynamic analysis      fractional order      generalized projective synchronization      Laplace transformation  
Received:  29 April 2010      Revised:  01 July 2010      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152), the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165).

Cite this article: 

Niu Yu-Jun(牛玉军), Wang Xing-Yuan(王兴元), Nian Fu-Zhong(年福忠), and Wang Ming-Jun(王明军) Dynamic analysis of a new chaotic system with fractional order and its generalized projective synchronization 2010 Chin. Phys. B 19 120507

[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[2] Hilfer R 2001 Applications of Fractional Calculus in Physics (New Jersey: World Scientific)
[3] Bagley R L and Calico R A 1991 J. Guid. Control Dynamics 14 304
[4] Koeller R C 1984 J. Appl. Mech. 51 294
[5] Koeller R C 1986 Acta Mechanica 58 251
[6] Heaviside O 1971 Electromagnetic Theory (New York: Chelsea)
[7] Yan X M and Liu D 2010 Acta Phys. Sin. 59 3043 (in Chinese)
[8] Xu Z, Liu C X and Yang T 2010 Acta Phys. Sin. 59 1524 (in Chinese)
[9] Zhang R X, Yang S P and Liu Y L 2010 Acta Phys. Sin. 59 1549 (in Chinese)
[10] Shao S Q, Gao X and Liu X W 2007 Chin. Phys. 16 2612
[11] Zhou P, Wei L J and Cheng X F 2009 Chin. Phys. B 18 2674
[12] Yang J and Qi D L 2010 Chin. Phys. B 19 020508
[13] Hartley T T , Lorenzo C F and Qammer H K 1995 IEEE Trans. CAS-I 42 485
[14] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[15] Li C and Chen G 2004 Chaos, Solitons and Fractals 22 549
[16] Li C P and Peng G J 2004 Chaos, Solitons and Fractals 22 443
[17] Ge Z M and Zhang A R 2007 Chaos, Solitons and Fractals 32 1791
[18] Li C G and Chen G R 2004 Physica A 341 55
[19] Zhang W, Zhou S, Li H and Zhu H 2009 Chaos, Solitons and Fractals 42 1684
[20] Wang F Q and Liu C X 2006 Acta Phys. Sin. 55 3922 (in Chinese)
[21] Varsha D G and Sachin B 2010 Comput. Math. Appl. 59 1117
[22] Liu W and Chen G 2003 Int. J. Bifurc. Chaos 13 261
[23] Caputo M 1967 Geophys. J. R. Astr. Soc. 13 529
[24] Samko S G, Klibas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Amsterdam: Gordan and Breach)
[25] Chen G and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465
[26] Ueta T and Chen G 2000 Int. J. Bifurc. Chaos 10 1917
[27] Diethelm K 1977 Electron. Trans. Numer. Anal. 5 1
[28] Diethelm K and Ford N J 2002 J. Math. Anal. Appl. 265 229
[29] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dynamics 29 3
[30] Matignon D 1996 Comput. Eng. Sys. Appl. 2 963
[31] Wolf A, Swinney J B, Swinney H L and Vastano J A1985 Physica D 16 285
[32] Hara S, Iwasaki T and Shiokata D 2006 IEEE Contral. Syst. Mag. 26 80
[33] Muth E J 1997 Transform Methods with Applications to Engineering and Operations Research (Englewood Cliffs: Prentice-Hall)
[1] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[2] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[3] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[4] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[5] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[6] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[7] Quantitative modeling of bacterial quorum sensing dynamics in time and space
Xiang Li(李翔), Hong Qi(祁宏), Xiao-Cui Zhang(张晓翠), Fei Xu(徐飞), Zhi-Yong Yin(尹智勇), Shi-Yang Huang(黄世阳), Zhao-Shou Wang(王兆守)†, and Jian-Wei Shuai(帅建伟)‡. Chin. Phys. B, 2020, 29(10): 108702.
[8] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[9] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[10] Using wavelet multi-resolution nature to accelerate the identification of fractional order system
Yuan-Lu Li(李远禄), Xiao Meng(孟霄), Ya-Qing Ding(丁亚庆). Chin. Phys. B, 2017, 26(5): 050201.
[11] The bound state solution for the Morse potential with a localized mass profile
S Miraboutalebi. Chin. Phys. B, 2016, 25(10): 100301.
[12] Controllability of fractional-order Chua's circuit
Zhang Hao (张浩), Chen Di-Yi (陈帝伊), Zhou Kun (周坤), Wang Yi-Chen (王一琛). Chin. Phys. B, 2015, 24(3): 030203.
[13] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui. Chin. Phys. B, 2015, 24(10): 100502.
[14] Function projective lag synchronization of fractional-order chaotic systems
Wang Sha (王莎), Yu Yong-Guang (于永光), Wang Hu (王虎), Ahmed Rahmani. Chin. Phys. B, 2014, 23(4): 040502.
[15] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
No Suggested Reading articles found!