Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 120502    DOI: 10.1088/1674-1056/19/12/120502
GENERAL Prev   Next  

Chaotic matter shock wave of an open system

Deng Yan(邓艳),Hai Wen-Hua(海文华), Rong Shi-Guang(荣识广), and Zhong Hong-Hua(钟宏华)
Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China
Abstract  We investigate a one-dimensional open Bose–Einstein condensate with attractive interaction, by considering the effect of feeding from nonequilibrium thermal cloud and applying the time-periodic inverted-harmonic potential. Using the direct perturbation method and the exact shock wave solution of the stationary Gross–Pitaevskii equation, we obtain the chaotic perturbed solution and the Melnikov chaotic regions. Based on the analytical and the numerical methods, the influence of the feeding strength on the chaotic motion is revealed. It is shown that the chaotic regions could be enlarged by reducing the feeding strength and the increase of feeding strength plays a role in suppressing chaos. In the case of "nonpropagated" shock wave with fixed boundary, the number of condensed atoms increases faster as the feeding strength increases. However, for the free boundary the metastable shock wave with fixed front density oscillates its front position and atomic number aperiodically, and their amplitudes decay with the increase of the feeding strength.
Keywords:  Bose–Einstein condensate      feeding strength      shock wave      chaos  
Received:  30 March 2010      Revised:  03 August 2010      Accepted manuscript online: 
PACS:  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875039) and the Construct Program of the National Key Discipline of China (Grant No. 4[2007]), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 200805420002).

Cite this article: 

Deng Yan(邓艳),Hai Wen-Hua(海文华), Rong Shi-Guang(荣识广), and Zhong Hong-Hua(钟宏华) Chaotic matter shock wave of an open system 2010 Chin. Phys. B 19 120502

[1] Whitham G B 1999 Linear and Nonlinear Waves (New York: Wiley)
[2] Courant R and Friedrichs K O 1948 Supersonic Flow and Shock Waves (Berlin: Springer-Verla)
[3] Shugaev F V and Shtemenko L S 1998 Propagation and Reflection of Shock Waves (Singapore: World Scientific)
[4] Gurovich V T, Grinenko A and Krasik Y E 2007 Phys. Rev. Lett. 99 124503
[5] Shvartsburg A B, Stenflo L and Shukla P K 2002 Euro. Phys. J. B 28 71
[6] Brazhnyi V A, Kamchatnov A M and Konotop V V 2003 Phys. Rev. A 68 035603
[7] Kulikov I and Zak M 2003 Phys. Rev. A 67 063605
[8] Damski B 2004 Phys. Rev. A 69 043610
[9] Dutton Z, Budde M, Slowe C and Hau L V 2001 Science 293 663
[10] Simula T P, Engels P, Coddington I, Schweikhardand V C, Cornell E A and Ballagh R J 2005 Phys. Rev. Lett. 94 080404
[11] Peréz-Garc'hia V M, Konotop V V and Brazhnyi V A 2004 Phys. Rev. Lett. 92 220403
[12] Hai W H, Zhu Q Q and Rong S G 2009 Phys. Rev. A 79 023603
[13] Castin Y and Dum R 1996 Phys. Rev. Lett. 77 5315
[14] Xu Z J, Shi J Q, Li Z and Cai P G 2006 Acta Phys. Sin. 55 5366 (in Chinese)
[15] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[16] Abdullaev F Kh and Galimzyanov R 2003 J. Phys. B 36 1099
[17] Chong G S and Hai W H 2007 J. Phys. B 40 211
[18] Zhou Z, Yu H Y and Yan J R 2010 Chin. Phys. B 19 010304
[19] Sackett C A, Stoof H T C and Hulet R G 1998 Phys. Rev. Lett. 80 2031
[20] Kagan Y, Muryshev A E and Shlyapnikov G V 1998 Phys. Rev. Lett. 81 933
[21] Gammal A, Frederico T, Tomio L and Chomaz P 2000 Phys. Rev. A 61 051602 (R)
[22] Li Y and Hai W H 2005 J. Phys. A 38 4105
[23] Mu A X, Zhou X Y and Xue J K 2008 Chin. Phys. B 17 764
[24] Hai W H, Zhang X L, Huang W L and Chong G S 2001 Int. J. Bifur. Chaos 11 2263
[25] Huang G X 2004 Chin. Phys. 13 1866
[26] Hai W H, Duan Y W and Pan L X 1997 Phys. Lett. A 234 198
[27] Hai W H, Rong S G and Zhu Q Q 2008 Phys. Rev. E 78 066214
[28] Fang J S 2008 Chin. Phys. B 17 3996
[29] Melnikov V K 1963 Trans. Mosc. Math. Soc. 12 1
[30] Zhu Q Q, Hai W H and Rong S G 2009 Phys. Rev. E 80 016203
[31] Xu J, Hai W H and Li H 2007 Chin. Phys. 16 2244
[32] Parthasarathy S 1992 Phys. Rev. A 46 2147
[33] Hoefer M A, Ablowitz M J, Coddington I, Cornell E A, Engels P and Schweikhard V 2006 Phys. Rev. A 74 023623
[34] Saito H and Ueda M 2001 Phys. Rev. Lett. 86 1406
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[9] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[10] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[11] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[12] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[15] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
No Suggested Reading articles found!