Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 120501    DOI: 10.1088/1674-1056/19/12/120501
GENERAL Prev   Next  

Continuum modeling for two-lane traffic flow with consideration of the traffic interruption probability

Tian Chuan(田川) and Sun Di-Hua(孙棣华)
College of Automation, Chongqing University, Chongqing 400030, China
Abstract  Considering the effects that the probability of traffic interruption and the friction between two lanes have on the car-following behaviour, this paper establishes a new two-lane microscopic car-following model. Based on this microscopic model, a new macroscopic model was deduced by the relevance relation of microscopic and macroscopic scale parameters for the two-lane traffic flow. Terms related to lane change are added into the continuity equations and velocity dynamic equations to investigate the lane change rate. Numerical results verify that the proposed model can be efficiently used to reflect the effect of the probability of traffic interruption on the shock, rarefaction wave and lane change behaviour on two-lane freeways. The model has also been applied in reproducing some complex traffic phenomena caused by traffic accident interruption.
Keywords:  two lanes      traffic interruption probability      traffic flow dynamics model      numerical simulation  
Received:  15 March 2010      Revised:  21 June 2010      Accepted manuscript online: 
PACS:  02.50.Cw (Probability theory)  
  89.40.Bb (Land transportation)  
Fund: Project supported by the National High Tech Research and Development Program of China (Grant No. 511-0910-1031).

Cite this article: 

Tian Chuan(田川) and Sun Di-Hua(孙棣华) Continuum modeling for two-lane traffic flow with consideration of the traffic interruption probability 2010 Chin. Phys. B 19 120501

[1] Peng G H, Sun D H and He H P 2008 Acta Phys. Sin. 57 7541 (in Chinese)
[2] Xue Y, Dong L Y, Yuan Y W and Dai S Q 2002 Acta Phys. Sin. 51 492 (in Chinese)
[3] Mo Y L, He H D, Xue Y, Shi W and Lu W Z 2008 Chin. Phys. B 17 4446
[4] Chen X, Gao Z Y, Zhao X M and Jia B 2007 Acta Phys. Sin. 56 2024 (in Chinese)
[5] Li X L, Kuang H, Song T, Dai S Q and Li Z P 2008 Chin. Phys. B 17 2366
[6] Ge H X, Zhu H B and Dai S Q 2005 Acta Phys. Sin. 54 4621 (in Chinese)
[7] Zheng Z Z and Wang A L 2009 Chin. Phys. B 18 489
[8] Peng G H, Sun D H and He H P 2009 Chin. Phys. B 18 468
[9] Ge H X, Dai S Q and Dong L Y 2008 Chin. Phys. B 17 23
[10] Sun D H and Peng G H 2009 Chin. Phys. B 18 3724
[11] Treiber M, Hennecke A and Helbing D 1999 Phys. Rev. E 59 239
[12] Tang T Q, Huang H J and Xu G 2008 Physica A 387 6845
[13] Daganzo C F 1997 Transpn. Res. B 31 83
[14] Tang T Q and Huang H J 2004 Chin. Sci. Bull. 49 1937
[15] Tang T Q and Huang H J 2005 J. Beijing University of Aero. Astro. 31 1121 (in Chinese)
[16] Jiang R, Wu Q S and Zhu Z J 2002 Transpn. Res. B 36 405
[17] Peng L, Tan H L, Wu D Y, Liu M R and Kong L J 2004 Acta Phys. Sin. 53 2899 (in Chinese)
[18] Zheng R S, Tan H L, Kong L J and Liu M R 2005 Acta Phys. Sin. 54 4614 (in Chinese)
[19] Tang T Q, Huang H J and Xue Y 2006 Acta Phys. Sin. 55 4027 (in Chinese)
[20] Wu K F, Kong L J and Liu M R 2006 Acta Phys. Sin. 55 6275 (in Chinese)
[21] Chen X, Gao Z Y, Jia B and Zhao X M 2007 Acta Phys. Sin. 56 2024 (in Chinese)
[22] Teng Y F, Gao Z Y, Jia B and Li F 2008 Acta Phys. Sin. 57 1365 (in Chinese)
[23] Gazis D C, Herman R and Rothery R W 1961 Oper. Res. 9 545
[24] Bando M, Hasebe K, Nakyaama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[25] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[26] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[27] Liu G Q, Lyrintiz A S and Michalopoulos P G 1998 Transport. Res. Rec. 1644 37
[28] Tang C F, Jiang R and Wu Q S 2007 Chin. Phys. 16 1570
[29] Liu G Q 1996 Appl. Math. Model 20 459
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!