Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 118104    DOI: 10.1088/1674-1056/19/11/118104
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Finite element modeling of heating phenomena of cracks excited by high-intensity ultrasonic pulses

Chen Zhao-Jiang(陈赵江), Zheng Jiang(郑江), Zhang Shu-Yi(张淑仪), Mi Xiao-Bing(米小兵), and Zheng Kai(郑凯)
Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by high-intensity ultrasonic pulses. In the finite element model, the high-power ultrasonic transducer is modeled by using a piezoelectric thermal-analogy method, and the dynamical interaction between both crack faces is modeled using a contact-impact theory. In the simulations, the frictional heating taking place at the crack faces is quantitatively calculated by using finite element thermal-structural coupling analysis, especially, the influences of acoustic chaos to plate vibration and crack heating are calculated and analysed in detail. Meanwhile, the related ultrasonic infrared images are also obtained experimentally, and the theoretical simulation results are in agreement with that of the experiments. The results show that, by using the theoretical method, a good simulation of dynamic interaction and friction heating process of the crack faces under non-chaotic or chaotic sound excitation can be obtained.
Keywords:  ultrasonic infrared imaging      frictional heating of cracks      acoustic chaos      finite element method  
Received:  11 April 2010      Revised:  23 May 2010      Accepted manuscript online: 
PACS:  02.70.Dh (Finite-element and Galerkin methods)  
  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
  81.70.-q (Methods of materials testing and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574073).

Cite this article: 

Chen Zhao-Jiang(陈赵江), Zheng Jiang(郑江), Zhang Shu-Yi(张淑仪), Mi Xiao-Bing(米小兵), and Zheng Kai(郑凯) Finite element modeling of heating phenomena of cracks excited by high-intensity ultrasonic pulses 2010 Chin. Phys. B 19 118104

[1] Favro L V, Han X Y, Ouyang Z, Sun G, Sui H and Thomas R L 2000 Rev. Sci. Instrum. 71 2418
[2] Hong Y, Miao P C, Zhang Z N, Zhang S Y and Shui X J 2004 Acoust. Sci. Technol. 25 77
[3] Han X Y, Zeng Z, Li W, Islam M S, Lu J P, Loggins V, Yitamben E, Favro L D, Newaz G and Thomas R L 2004 J. Appl. Phys. 95 3792
[4] Morbidini M and Cawley P 2009 J. Appl. Phys. 105 093530
[5] Mi X B and Zhang S Y 2004 Prog. Nat. Sci. 14 628 (in Chinese)
[6] Mian A, Newaz G, Han X Y, Mahmood T and Saha C 2004 Compos. Sci. Technol. 64 1115
[7] Han X Y, Islam M, Newaz G, Favro L V and Thomas R L 2006 J. Appl. Phys. 99 074905
[8] Chen Z J, Zhang S Y and Zheng K 2010 Acta Phys. Sin. 59 4071 (in Chinese)
[9] Ingolf M, Alexander K, Peter V and Karl S 2005 Eng. Struct. 27 191
[10] Wang L, Xu W and Li Y 2008 Chin. Phys. B 17 2446
[11] Abdullah A and Pak A 2008 Int. J. Adv. Manufact. Techn. 39 21
[12] Potthast C, Twiefel J and Wallaschek J 2007 J. Sound Vib. 308 405
[13] Cote F, Masson P, Mrad N and Cotoni V 2004 Compos. Struct. 65 471
[14] Hallquist J O 2006 LS-DYNA Theory Manual (Livermore: LSTC)
[15] Cook R D, Maklus D S, Plesha M E and Witt R J 2001 Concepts and Applications of Finite Element Analysis (New York: Wiley)
[16] Mabrouki F, Thomasb M, Genesta M and Fahr A 2009 NDT & E Int. 42 345
[17] Han X, Favro L D, Ouyang Z, Thomas R L 2002 AIP Conf. Proc. 615 552
[18] Han X Y, Li W, Zeng Z, Favro L D and Thomas R L 2002 Appl. Phys. Lett. 81 3188
[19] Chen Z J, Zhang S Y, Zheng K and Kuo P K 2009 J. Appl. Phys. 106 023507
[20] Okada J, Ito T, Kawashima K and Nishimura N 2001 Jap. J. Appl. Phys. 40 3579
[21] Zhou D, Liu X Z, Gong X F, Nazarov V E and Ma L 2009 Chin. Phys. B 18 1898
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[7] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[8] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[9] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[10] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[11] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[12] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[13] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[14] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[15] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
No Suggested Reading articles found!