Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117501    DOI: 10.1088/1674-1056/19/11/117501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal effect mechanism of magnetoresistance in p-type diamond films

Qin Guo-Ping(秦国平)a), Kong Chun-Yang(孔春阳)a)†, Ruan Hai-Bo(阮海波)a), Huang Gui-Juan(黄桂娟)a), Cui Yu-Ting(崔玉亭)a), and Fang Liang(方亮)b)
a Key Laboratory of Optical Engineering, Chongqing Normal University, Chongqing 400047, China; b Department of Applied Physics, Chongqing University, Chongqing 400044, China
Abstract  Based on the analysis and the discussion of the influence of thermal ionization energy and various scatterings on magnetoresistance(MR) of p-type diamond films, a revised model of valence band split-off over temperature is put forward, and a corresponding calculation formula is given for the MR of p-type diamond films (Corbino discs). It is shown that the theoretical calculation that the MR of diamond films changes with temperature is consistent with the experiment. The influence of Fermi energy level on MR of diamond films is discussed. Additionally, the thermal effect mechanism of MR in p-type diamond films is also explored.
Keywords:  diamond film      magnetoresistance      valence-band split-off  
Received:  22 March 2010      Revised:  17 May 2010      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  73.61.Cw (Elemental semiconductors)  
Fund: Project supported by the Chongqing City Education Commission of China (Grant No. 040804).

Cite this article: 

Qin Guo-Ping(秦国平), Kong Chun-Yang(孔春阳), Ruan Hai-Bo(阮海波), Huang Gui-Juan(黄桂娟), Cui Yu-Ting(崔玉亭), and Fang Liang(方亮) Thermal effect mechanism of magnetoresistance in p-type diamond films 2010 Chin. Phys. B 19 117501

[1] Zhang Z Y, Lu X C and Luo J B 2007 Chin. Phys. 16 3790
[2] Wang L, Ouyang X P, Fan R Y, Jin Y J, Zhang Z B, Pan H B, Liu L Y, L"u F X and Bu R A 2008 Chin. Phys. B 17 3644
[3] Kamiya S, Sato M, Saka M and Hiroyuki A 1999 Appl. Phys. 86 224
[4] Vermeeren V, Bijnens N, Wenmackers S, Daenen M, Haenen K, Williams O A, Ameloot M, VandeVen M, Wagner P and Michiels L 2007 Langmuir 23 13193
[5] Mitsuda Y and Kobauashi K 1999 Thin Solid Films 345 55
[6] Ye H, Tumilty N, Bevilacqua M, Curat S, Nesladek M, Bazin B, Bergonzo P, and Jackman R B 2008 J. Appl. Phys. 103 054503
[7] Willems B L, Dao V H, Vanacken J, Chibotaru L F, Moshchalkov V V, Guillam'on I, Suderow H, Vieira S, Janssens S D, Williams O A, Haenen K and Wagner P 2009 Phys. Rev. B 80 224518
[8] Nesl'adek M, Tromson D, Mer C, Bergonzo P, Hubik P and Mares J J 2006 Appl. Phys. Lett. 88 232111
[9] Jiang X, Schiffmann K and Klages C P 1994 Phys. Rev. B bf50 8403
[10] Jiang X and Klages C P 1993 Appl. Phys. Lett. 62 3438
[11] Marevs J J, Hub'hik P, Krivstofik J, Kindl D, Fanta M, Nesl'adek M, Williams O and Gruen D M 2006 Appl. Phys. Lett. bf88 092107
[12] Liao K J, Wang W L and Wang B B 2000 Microfabreication Technology 1 75
[13] Wang W L, Liao K J and Wang B B 2000 Diam. Relat. Mater. bf9 1612
[14] Fei Y J, Yang D, Wang X, Meng Q B, Wang X J, Xiong Y Y, Nie Y X and Feng K A 2002 Diam. Relat. Mater. bf11 49
[15] Kong C Y, Wang W L, Liao K J, Wang S X and Fang L 2002 J. Appl. Phys. 91 3044
[16] Kong C Y, Wang W L, Liao K J, Wang S X and Fang L 2002 J. Phys. Cond. Matt. 14 1765 endfootnotesize
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[6] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[9] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[10] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[11] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[12] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[13] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[14] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[15] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
No Suggested Reading articles found!