Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 114203    DOI: 10.1088/1674-1056/19/11/114203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Research of photolithography technology based on surface plasmon

Li Hai-Hua(李海华), Chen Jian(陈健), and Wang Qing-Kang(王庆康)
National Key Laboratory of Micro/Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  This paper demonstrates a new process of the photolithography technology, used to fabricate simply fine patterns, by employing surface plasmon character. The sub-wavelength periodic silica structures with uniform silver film are used as the exposure mask. According to the traditional semiconductor process, the grating structures are fabricated at exposing wavelength of 436 nm. At the same time, it provides additional and quantitative support of this technique based on the finite-difference time-domain method. The results of the research show that surface plasmon characteristics of metals can be used to increase the optical field energy distribution differences through the silica structures with silver film, which directly impact on the exposure of following photosensitive layer in different regions.
Keywords:  surface plasmons      lithography      finite-difference time-domain      sub-wavelength periodic structure  
Received:  24 September 2009      Revised:  11 May 2010      Accepted manuscript online: 
PACS:  42.79.Dj (Gratings)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60808014), the Shanghai Committee of Science and Technology of China (Grant No. 0852nm06600).

Cite this article: 

Li Hai-Hua(李海华), Chen Jian(陈健), and Wang Qing-Kang(王庆康) Research of photolithography technology based on surface plasmon 2010 Chin. Phys. B 19 114203

[1] Wood R W 1902 Proc. Phys. Soc. London 18 269
[2] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[3] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbeseb T W 2002 Science 297 820
[4] Thio T, Pellerin K M, Linke R A, Lezec H J and Ebbesen T W 2001 Opt. Lett. 26 1972
[5] Fang L, Du J L, Guo X W, Wang J Q, Zhang Z Y, Luo X G and Du C L 2008 Chin. Phys. B 17 249
[6] Srituravanich W, Fang N, Durant S, Ambati M, Sun C and Zhang X 2004 J. Vac. Sci. Technol. B 22 3475
[7] Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C and Zhang X 2005 Nano Lett. 5 1726
[8] Srituravanich W, Durant S, Lee H, Sun C and Zhang X 2005 J. Vac. Sci. Technol. B 23 2636
[9] Zhou R L, Chen X S, Zeng Y, Zhang J B, Chen H, Wang S W, Lu W, Li H J, Xia H and Wang L L 2008 Acta Phys. Sin. 57 3506 (in Chinese)
[10] Cao Z Q 2009 Waveguide Optics (Beijing: Science Press) p132 (in Chinese)
[11] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[12] Sun A J and Zeng D Y 2008 Journal of Modern Optis 55 1639
[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[3] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[4] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[5] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[6] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[7] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[8] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[9] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[10] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[11] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[12] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[13] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[14] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[15] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
No Suggested Reading articles found!