Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113501    DOI: 10.1088/1674-1056/19/11/113501
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Molecular constants of LiCl(X1Σ+) and elastic collisions of two ground-state Cl and Li atoms at low and ultralow temperatures

Zhu Zun-Lue(朱遵略), Zhang Xiao-Niu(张小妞), Kou Su-Hua(寇素华), Shi De-Heng(施德恒), and Sun Jin-Feng(孙金锋)
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  Interaction potentials for LiCl(X1Σ+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent basis sets, which are used to determine the spectroscopic parameters (D0, De, Re, ωeωeχe, Be and αe. The potentials obtained at the basis sets, i.e., aug-cc-pV5Z-JKFI for Cl and cc-pV5Z for Li, are selected to study the elastic collision properties of Li and Cl atoms at the impact energies from 1.0×10-12 to 1.0×10-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and their shapes are mainly dominated by the s-partial wave at very low impact energies. Only one shape resonance can be found in the total elastic cross sections over the present collision energy regime, which is rather strong and obviously broadened by the overlap contributions of the abundant resonances coming from various partial waves. Abundant resonances exist for the elastic partial-wave cross sections until l = 22 partial waves. The vibrational manifolds of the LiCl(X1Σ+) molecule, which are predicted at the present level of theory and the basis sets cc-pV5Z for Li and the aug-cc-pV5Z-JKFI for Cl, should achieve much high accuracy due to the employment of the large correlation-consistent basis sets.
Keywords:  atom–atom collision      shape resonance      interaction potential      molecular constant  
Received:  11 March 2010      Revised:  12 May 2010      Accepted manuscript online: 
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
  33.20.Tp (Vibrational analysis)  
  34.50.-s (Scattering of atoms and molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60777012 and 10874064), and the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008).

Cite this article: 

Zhu Zun-Lue(朱遵略), Zhang Xiao-Niu(张小妞), Kou Su-Hua(寇素华), Shi De-Heng(施德恒), and Sun Jin-Feng(孙金锋) Molecular constants of LiCl(X1Σ+) and elastic collisions of two ground-state Cl and Li atoms at low and ultralow temperatures 2010 Chin. Phys. B 19 113501

[1] Hargittai M 2000 Chem. Rev. 100 2233
[2] Kirkpatrick J D, Reid I N, Liebert J, Cutri R M, Nelson B, Beichman C A, Dahn C C, Monet D G, Gizis J E and Skrutskie M F 1999 Astrophys. J. 519 802
[3] Knauth D C, Federman S R, Lambert D L and Crane P 2000 Nature 405 656
[4] Hosseini B H, Weck P F, Sadeghpour H R, Kirby K and Stancil P C 2009 J. Chem. Phys. 130 054308
[5] Korn A J, Grundahl F, Richard O, Barklem P S, Mashonkina L, Collet R, Piskunov N and Gustafsson B 2006 Nature 442 657
[6] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure, Vol.4, Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p378
[7] Jones H and Lindenmayer J 1987 Chem. Phys. Lett. 135 189
[8] Thompson G A, Maki A G, Olson Wm B and Weber A 1987 J. Mol. Spectrosc. 124 130
[9] Gilbert T L 1968 Second Midwest Chemistry Conference, WIS-TCI-302. These involved data were abstracted by Brumer P and Karplus M in J. Chem. Phys. 58 (1973) 3903
[10] Pearson E F and Gordy W 1969 Phys. Rev. 177 52
[11] Lide D R, Cahill P and Gold L P 1964 J. Chem. Phys. 40 156
[12] Bulewicz E M, Phillips L F and Sugden T M 1961 Trans. Faraday Soc. 57 921
[13] Brewer L and Brackett E 1961 Chem. Rev. 61 425
[14] Klemperer W, Norris W G, B"uchler A and Emslie A G 1960 J. Chem. Phys. 33 1534 and references herein
[15] Klemperer W and Rice S A 1957 J. Chem. Phys. 26 618
[16] Matcha R L 1967 J. Chem. Phys. 47 4595
[17] Redington R L 1970 J. Phys. Chem. 74 181
[18] Watson J K G 1973 J. Mol. Spectrosc. 45 99
[19] Finn E J 1975 J. Chem. Phys. 62 1842
[20] Shanker J, Agrawal H B and Agrawal G G 1980 J. Chem. Phys. 73 4056
[21] Kumar M, Kaur A J and Shanker J 1986 J. Chem. Phys. 84 5735
[22] Langhoff S R, Bauschlicher C W and Partridge H 1986 J. Chem. Phys. 84 1687
[23] Kumar M and Shanker J 1992 J. Chem. Phys. 96 5289
[24] Ogilvie J F 1992 Spectrosc. Lett. 25 1341
[25] Dotelli G, Lombardi E and Jansen L 1994 J. Mol. Struct. (Theochem) 306 117
[26] Hati S, Datta B and Datta D 1996 J. Phys. Chem. 100 19808
[27] Bacskay G B and Buckingham A D 1997 Mol. Phys. 91 391
[28] Gutsev G L, Nooijen M and Bartlett R J 1997 Chem. Phys. Lett. 276 13
[29] Seth M, Npointner M P, Bowmaker G A and Schwerdtfeger P 1999 Mol. Phys. 96 1767
[30] Weck P F, Kirby K and Stancil P C 2004 J. Chem. Phys. 120 4216
[31] Weck P F, Schweitzer A, Kirby K, Hauschildt P H and Stancil P C 2004 Astrophys. J. 613 567
[32] Lee D K, Lee Y S, Hagebaum-Reignier D and Jeung G H 2006 Chem. Phys. 327 406
[33] Mintz B, Wilson A K and Bagus P S 2009 Chem. Phys. Lett. 468 286
[34] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[35] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[36] Dunning T H 1989 J. Chem. Phys. 90 1007
[37] Peterson K A, Woon D E and Dunning T H 1994 J. Chem. Phys. 100 7410
[38] Peterson K A, Kendall R A and Dunning T H 1993 J. Phys. Chem. 99 1930
[39] Werner H J, Knowles P J, Lindh R, Manby F R, Sch"utz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, K"oppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pfl"uger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio programs
[40] Murrell J N, Carter S, Farantos S C, Huxley P and Varandas J C 1984 Molecular Potential Energy Functions (Chichester: John Wiley & Sons) p9
[41] Zhang X N, Shi D H, Zhang J P, Zhu J L and Sun J F 2010 Chin. Phys. B 19 053401
[42] Shi D H, Zhang J P Liu Y F Sun J F and Zhu Z L 2009 Int. J. Quantum. Chem. 109 1159
[43] Gonz'alez J L M Q and Thompson D 1997 Comput. Phys. 11 514
[44] C^ot'e R and Dalgarno A 1994 Phys. Rev. A 50 4827
[45] C^ot'e R, Dalgarno A and Jamieson M J 1994 Phys. Rev. A 50 399
[46] Jamieson M J, Dalgarno A and Yukich J N 1992 Phys. Rev. A 46 6956
[47] Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 Chin. Phys. B 19 013501
[48] Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 Chin. Phys. B 19 053401
[49] Shi D H, Zhang J P, Sun J F, Liu Y F and Zhu Z L 2009 Acta Phys. Sin. 58 7646 (in Chinese)
[1] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[2] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[3] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[4] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[5] Study on the A2Π3/2u, B2Δ3/2u, and X2Π3/2g states of Cl2+ including its isotopologues
Wu Ling (吴玲), You Su-Ping (尤素萍), Shao Xu-Ping (邵旭萍), Chen Gang-Jin (陈钢进), Ding Ning (丁宁), Wang You-Mei (汪友梅), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2015, 24(8): 083301.
[6] Fast-electron-impact ionization process by 3p of hydrogen-like ions in Debye plasmas
Qi Yue-Ying (祁月盈), Ye Dan-Dan (叶丹丹), Wang Jian-Guo (王建国), Qu Yi-Zhi (屈一至). Chin. Phys. B, 2015, 24(3): 033403.
[7] The ternary Ni–Al–Co embedded-atom-method potential for γ/γ’ Ni-based single-crystal superalloys:Construction and application
Du Jun-Ping (杜俊平), Wang Chong-Yu (王崇愚), Yu Tao (于涛). Chin. Phys. B, 2014, 23(3): 033401.
[8] Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule
Wang Jie-Min (王杰敏), Liu Qiang (刘强). Chin. Phys. B, 2013, 22(9): 093102.
[9] Global analysis of the Comet-tail system of 12C16O+
Shao Xu-Ping (邵旭萍), Zhao Min (赵敏), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2013, 22(7): 073302.
[10] One-range addition theorems for generalized integer and noninteger μ Coulomb, and exponential type correlated interaction potentials with hyperbolic cosine in position, momentum, and four-dimensional spaces
I. I. Guseinov . Chin. Phys. B, 2012, 21(6): 063101.
[11] Investigations of spectroscopic parameters and molecular constants for X1Σg+, w3Δu, and W1Δu electronic states of P2 molecule
Wang Jie-Min(王杰敏), Feng Heng-Qiang(冯恒强), Sun Jin-Feng(孙金锋), and Shi De-Heng(施德恒) . Chin. Phys. B, 2012, 21(2): 023102.
[12] MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) . Chin. Phys. B, 2011, 20(4): 043105.
[13] Accurate potential energy function and spectroscopic study of the X$^2\Sigma^+$, A$^2\Pi$ and B$^2\Sigma^+$ states of the CP radical
Liu Yu-Fang(刘玉芳) and Jia Yi(贾毅). Chin. Phys. B, 2011, 20(3): 033106.
[14] Spectroscopic parameters and molecular constants of HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+) isotope molecules
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2010, 19(12): 123501.
[15] Accurate ab initio study of low-lying electronic states of phosphorus nitride radical
Wang Jie-Min(王杰敏), Sun Jin-Feng(孙金锋), and Shi De-Heng(施德恒). Chin. Phys. B, 2010, 19(11): 113404.
No Suggested Reading articles found!