Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110510    DOI: 10.1088/1674-1056/19/11/110510
GENERAL Prev   Next  

The 0-1 test algorithm for chaos and its applications

Sun Ke-Hui(孙克辉)a)†, Liu Xuan(刘璇) a), and Zhu Cong-Xu(朱从旭)b)
a School of Physics Science and Technology, Central South University, Changsha 410083, China; b School of Information Science and Engineering, Central South University, Changsha 410083, China
Abstract  To determine whether a given deterministic nonlinear dynamic system is chaotic or periodic, a novel test approach named zero-one (0-1) test has been proposed recently. In this approach, the regular and chaotic motions can be decided by calculating the parameter K approaching asymptotically to zero or one. In this study, we focus on the 0-1 test algorithm and illustrate the selection of parameters of this algorithm by numerical experiments. To validate the reliability and the universality of this algorithm, it is applied to typical nonlinear dynamic systems, including fractional-order dynamic system.
Keywords:  chaos      0-1 test      fractional-order system      Lyapunov exponent  
Received:  04 March 2010      Revised:  21 May 2010      Accepted manuscript online: 
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of of China (Grant No. 60672041).

Cite this article: 

Sun Ke-Hui(孙克辉), Liu Xuan(刘璇), and Zhu Cong-Xu(朱从旭) The 0-1 test algorithm for chaos and its applications 2010 Chin. Phys. B 19 110510

[1] Hartley T T, Lorenzo C F and Qammer H K 1995 IEEE Trans. Circ. Syst. I 42 485
[2] Li C and Chen G 2004 Chaos, Solitons and Fractals 22 549
[3] Li C and Chen G 2004 Physica A 341 55
[4] Ahmad W M and Sprott J C 2003 Chaos, Solitons and Fractals 16 339
[5] Zhang R X and Yang S P 2009 Chin. Phys. B 18 3295
[6] Chen X R, Liu C X and Wang F Q 2008 Chin. Phys. B 17 1664
[7] Zhou P, Wei L J and Cheng X F 2009 Chin. Phys. B 18 2674
[8] Wang C N, Ma J, Chu R T and Li S R 2009 Chin. Phys. B 18 3766
[9] Yang J and Qi D L 2010 Chin. Phys. B 19 020508
[10] Li B, Wang H K and Chen S 2010 Acta Phys. Sin. 59 783 (in Chinese)
[11] Zhang S Q, Jia J, Gao M and Han X 2010 Acta Phys. Sin. 59 1576 (in Chinese)
[12] Gottwald G A and Melbourne I 2004 Proc. R. Soc. Lond. A 460 603
[13] Falconer I, Gottwald G A and Melbourne I 2007 SIAM J. Appl. Dyn. Syst. 6 395
[14] Gottwald G A and Melbourne I 2005 Physica D 212 100
[15] Cafagna D and Grassi G 2008 Int. J. Bifurc. Chaos 18 615
[16] Sun K H and Sprott J C 2009 Int. J. Bifurc. Chaos 19 1357
[17] Sun K H, Wang X and Sprott J C 2010 Int. J. Bifurc. Chaos 20 1209
[18] Hu J, Tung W W, Gao J B and Cao Y H 2005 Phys. Rev. E 72 056207
[19] Gottwald G A and Melbourne I 2008 Phys. Rev. E 77 028201 endfootnotesize
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[8] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[9] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[10] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[11] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[12] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[15] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
No Suggested Reading articles found!