Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110505    DOI: 10.1088/1674-1056/19/11/110505
GENERAL Prev   Next  

Structural properties of effective potential model by liquid state theories

Xiang Yuan-Tao(向远涛)a), Andrej Jamnikb), and Yang Kai-Wei(杨开巍)a)
a School of Physics Science and Technology, Central South University, Changsha 410083, China; b University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ašker?eva 5, SI-1001 Ljubljana, Slovenia
Abstract  This paper investigates the structural properties of a model fluid dictated by an effective inter-particle oscillatory potential by grand canonical ensemble Monte Carlo (GCEMC) simulation and classical liquid state theories. The chosen oscillatory potential incorporates basic interaction terms used in modeling of various complex fluids which is composed of mesoscopic particles dispersed in a solvent bath, the studied structural properties include radial distribution function in bulk and inhomogeneous density distribution profile due to influence of several external fields. The GCEMC results are employed to test the validity of two recently proposed theoretical approaches in the field of atomic fluids. One is an Ornstein–Zernike integral equation theory approach; the other is a third order + second order perturbation density functional theory. Satisfactory agreement between the GCEMC simulation and the pure theories fully indicates the ready adaptability of the atomic fluid theories to effective model potentials in complex fluids, and classifies the proposed theoretical approaches as convenient tools for the investigation of complex fluids under the single component macro-fluid approximation.
Keywords:  atomic fluid      classical ensemble  
Received:  30 April 2009      Revised:  29 May 2010      Accepted manuscript online: 
PACS:  47.57.-s (Complex fluids and colloidal systems)  
  61.20.Gy (Theory and models of liquid structure)  
  61.20.Ja (Computer simulation of liquid structure)  

Cite this article: 

Xiang Yuan-Tao(向远涛), Andrej Jamnik, and Yang Kai-Wei(杨开巍) Structural properties of effective potential model by liquid state theories 2010 Chin. Phys. B 19 110505

[1] Patchkovskii S and Heine T 2009 Phys. Rev. E 80 031603
[2] Sartarelli S A, Szybisz L and Urrutia I 2009 Phys. Rev. E 79 011603
[3] Julin J, Napari I, Merikanto J and Vehkam"aki H 2008 J. Chem. Phys. 129 234506
[4] Lutsko J F 2008 J. Chem. Phys. 129 244501
[5] Sun Z H and Han R J 2008 Chin. Phys. B 17 3185
[6] Zhou S Q 2009 J. Chem. Phys. 131 134702
[7] Bryk P and MacDowell L G 2008 J. Chem. Phys. 129 104901
[8] Iwamatsu M 2008 J. Chem. Phys. 129 104508
[9] Johannessen E, Gross J and Bedeaux D 2008 J. Chem. Phys. 129 184703
[10] Zhang Y, Zhang Y and Zeng Y P 2008 Chin. Phys. B 17 4645
[11] Zhou S Q 2004 Chem. Phys. Lett. 385 208
[12] Zhou S Q 2003 Phys. Lett. A 319 279
[13] Zhou S Q 2003 Chin. Phys. Lett. 20 2107
[14] Ebner C, Saam W F and Stroud D 1976 Phys. Rev. A 14 226
[15] Evans R 1979 Adv. Phys. 28 143
[16] Nordholm S, Johnson M and Freasier B C 1980 Aust. J. Chem. 33 2139
[17] Johnson M and Nordholm S 1981 J. Chem. Phys. 75 1953
[18] Tarazona P 1985 Phys. Rev. A 31 2672
[19] Curtin W A and Ashcroft N W 1985 Phys. Rev. A 32 2909
[20] Rosenfeld Y 1989 Phys. Rev. Lett. 63 980
[21] Kierlik E and Rosinberg M L 1990 Phys. Rev. A 42 3382
[22] Capit'an J A and Cuesta J A 2007 Phys. Rev. E 76 011403
[23] Mart'hinez-Rat'on Y, Capit'an J A and Cuesta J A 2008 Phys. Rev. E 77 051205
[24] Zhou S Q and Ruckenstein E 2000 Phys. Rev. E 61 2704
[25] Zhou S Q 2002 New J. Phys. 4 36
[26] Zhou S Q 2002 Chin. Phys. Lett. 19 1322
[27] Zhou S Q 2003 Chem. Phys. 289 309
[28] Zhou S Q 2004 J. Phys. Chem. B 108 3017
[29] Zhou S Q 2004 Chem. Phys. 297 171
[30] Zhou S Q and Ruckenstein E 2000 J. Chem. Phys. 112 8079
[31] Zhou S Q and Ruckenstein E 2000 J. Chem. Phys. 112 5242
[32] Zhou S Q 2000 J. Chem. Phys. 113 8719
[33] Zhou S Q 2001 Phys. Rev. E 63 051203
[34] Zhou S Q 2001 Phys. Rev. E 63 061206
[35] Zhou S Q 2001 J. Phys. Chem. B 105 10360
[36] Zhou S Q 2008 Chin. Phys. B 17 3812
[37] Zhou S Q 2001 J. Chem. Phys. 115 2212
[38] Zhou S Q 2002 Commun. Theor. Phys. 37 543
[39] Tang Z, Scriven L E and Davis H T 1991 J. Chem. Phys. bf 95 2659
[40] Kol A and Laird B B 1997 Mol. Phys. 90 951
[41] Sweatman M B 2001 Phys. Rev. E 63 031102
[42] Kim S C and Lee S H 2004 J. Phys.: Condens. Matter bf 16 6365
[43] Zhou S Q 2006 Phys. Rev. E 74 031119
[44] Zhou S Q 2008 Phys. Rev. E 77 041110
[45] Zhou S Q 2003 Phys. Rev. E 68 061201
[46] Zhou S Q 2003 Commun. Theor. Phys. 40 721
[47] Zhou S Q 2006 J. Chem. Phys. 124 44501
[48] Zhou S Q 2005 Int. J. Mod. Phys. B 19 4701
[49] Zhou S Q 2005 J. Colloid Interface Sci. 290 364
[50] Zhou S Q 2006 Int. J. Mod. Phys. B 20 469
[51] Zhou S Q 2006 Mol. Simulat 32 1165
[52] Zhou S Q 2007 Chin. Phys. 16 1167
[53] Zhou S Q 2010 J. Chem. Phys. 132 194112
[54] Oxtoby D W 1990 Nature 347 725
[55] Tang Z, Scriven L E and Davis H T 1992 J. Chem. Phys. bf 97 494
[56] Patra C N and Ghosh S K 1993 Phys. Rev. E 48 1154
[57] Tellez G and Trizac E 2003 Phys. Rev. E 68 061401
[58] Patel N and Egorov S A 2004 J. Chem. Phys. 121 4987
[59] Zhou S Q 2004 Chem. Phys. Lett. 392 110
[60] Zhou S Q 2004 Chem. Phys. Lett. 399 323
[61] Zhou S Q 2004 Chem. Phys. Lett. 399 315
[62] Zhou S Q 2006 Phys. Rev. E 74 011402
[63] Zhou S Q 2005 J. Colloid and Interface Sci. 288 308
[64] Zhou S Q 2005 Commun. Theor. Phys. 43 735
[65] Yan J Y 2008 Chin. Phys. B 17 4640
[66] Chandler D, McCoy J D and Singer S J 1986 J. Chem. Phys. 85 5971
[67] Yethiraj A 1998 J. Chem. Phys. 109 3269
[68] van der Schoot P 2000 Macromolecules 33 8497
[69] Zhou S Q and Zhang X 2001 Phys. Rev. E 64 011112
[70] Zhou S Q 2005 Chem. Phys. 310 129
[71] Zhou S Q 2006 J. Colloid and Interface Sci. 298 31
[72] Asakura S and Oosawa F 1954 J. Chem. Phys. 22 1255
[73] Vrij A 1976 Pure Appl. Chem. 48 471
[74] Wax J F, Albaki R and Bretonnet J L 2000 Phys. Rev. B bf 62 14818
[75] Moriarty J A and Widom M 1997 Phys. Rev. B 56 7905
[76] Zhou S Q and Solana J R 2008 Phys. Rev. E 78 021503
[77] Zhou S Q 2006 J. Chem. Phys. 125 144518
[78] Zhou S Q 2007 J. Phys. Chem. B 111 10736
[79] Zhou S Q 2008 J. Chem. Phys. 128 104511
[80] Zhou S Q 2009 J. Chem. Phys. 130 014502
[81] Zhou S Q and Solana J R 2009 Chem. Rev. 109 2829
[82] Zhou S Q and Jamnik A 2006 J. Phys. Chem. B 110 6924
[83] Zhou S Q 2006 Commun. Theor. Phys. (Beijing, China). bf 46 323
[84] Henderson D 1992 Fundamentals of Inhomogeneous Fluids (New York: Marcel Dekker)
[85] Martynov G A 1992 Fundamental Theory of Liquids. Method of Distribution Functions (Bristol: Adam Hilger)
[86] Zhou S Q 2007 Theor. Chem. Acc. 117 555
[87] Rosenfeld Y and Ashcroft N W 1979 Phys. Rev. A 20 1208
[88] Frenkel D and Smit B 2001 Understanding Molecular Simulation (Boston, MA: Academic Press)
[89] Malasics A, Gillespie D and Boda D 2008 J. Chem. Phys. 128 124102
[1] Theoretical study on non-sequential double ionization of carbon disulfide with different bond lengths in linearly polarized laser fields
Kai-Li Song(宋凯莉), Wei-Wei Yu(于伟威), Shuai Ben(贲帅), Tong-Tong Xu(徐彤彤), Hong-Dan Zhang(张宏丹), Pei-Ying Guo(郭培莹), Jing Guo(郭静). Chin. Phys. B, 2017, 26(2): 023204.
[2] Double ionization of helium interacting with elliptically polarized laser pulse by classical ensemble simulations
Yu Wei-Wei(于伟威),Guo Jing(郭静), and Liu Xue-Shen(刘学深). Chin. Phys. B, 2010, 19(2): 023201.
No Suggested Reading articles found!