Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110313    DOI: 10.1088/1674-1056/19/11/110313
GENERAL Prev   Next  

Thermal entanglement in molecular spin rings

Hou Jing-Min(侯净敏), Du Long(杜龙), Ding Jia-Yan(丁伽焱), and Zhang Wen-Xin(张文新)
Department of Physics, Southeast University, Nanjing 211189, China
Abstract  The thermal entanglement in the triangular molecular spin ring with Dzyaloshinskii–Moriya interaction is studied. The concurrences of arbitrary two spins of the triangular molecular spin ring for various cases are evaluated. The tendency of the concurrence with Dzyaloshinskii–Moriya interaction and temperature is analysed and discussed. We note that the concurrence arrives at its maximum in the regime with the large Dzyaloshinskii–Moriya interaction and low temperature, and gradually decreases to zero with the increase of temperature. The concurrence has different features for the ferromagnetic and antiferromagnetic cases. For completeness, we also numerically calculate the concurrence of spin rings with N>3 spins and analyse their behaviours.
Keywords:  thermal entanglement      molecular spin ring      concurrence  
Received:  06 September 2009      Revised:  06 July 2010      Accepted manuscript online: 
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University, China.

Cite this article: 

Hou Jing-Min(侯净敏), Du Long(杜龙), Ding Jia-Yan(丁伽焱), and Zhang Wen-Xin(张文新) Thermal entanglement in molecular spin rings 2010 Chin. Phys. B 19 110313

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[3] Bennett C H, DiVincenzo D, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[4] Bennett C H, Bernstein H, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[5] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[6] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. bf 69 2881
[9] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[10] Deutsch D 1985 Proc. R. Soc. London Ser. A 400 97
[11] Shor P W 1995 Phys. Rev. A 52 R2493
[12] Lambert N, Emary C and Brandes T 2004 Phys. Rev. Lett. 92 073602
[13] Vedral V 2004 New J. Phys. 6 102
[14] D"ur W, Hartmann L, Hein M, Lewenstein M and Briegel H J 2005 Phys. Rev. Lett. 94 097203
[15] White S R 1992 Phys. Rev. Lett. 69 2863
[16] Vidal G 2003 Phys. Rev. Lett. 91 147902
[17] Hao X and Zhu S 2007 Phys. Lett. A 366 206
[18] Osterloh A, Amico L, Falci G and Fazio R 2002 it Nature 416 608
[19] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[20] Osborne T J and Nielsen M A 2002 Phys. Rev. A bf 66 032110
[21] Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. B 17 4002
[22] Hu M G, Xue K and Ge M L 2008 Phys. Rev. A bf 78 052324
[23] Wang X 2001 Phys. Rev. A 64 012313
[24] Kamta G L and Starace A F 2002 Phys. Rev. Lett. bf 88 107901
[25] dos Santos F B M, Dias R M and Mac^edo A M S 2009 Phys. Rev. A 79 032329
[26] Wang Y, Cao J and Wang Y 2005 Phys. Lett. A 342 375
[27] Asoudeh M and Karimipour V 2005 Phys. Rev. A bf 71 022308
[28] Zhang G F and Li S S 2005 Phys. Rev. A bf 72 034302
[29] Sun Y, Chen Y and Chen H 2003 Phys. Rev. A bf 68 044301
[30] Qin M, Xu S L, Tao Y J and Tian D P 2008 Chin. Phys. B 17 2800
[31] Li D C and Cao Z L 2009 Chin Phys. Lett. bf 26 020309
[32] Li D C, Wang X P and Cao Z L 2008 J. Phys.: Condens. Matter 20 325229
[33] Yang G H and Zhou L 2008 Commun. Theor. Phys. bf 49 1635
[34] Wu K D, Zhou B and Cao W Q 2007 Phys. Lett. A 362 381
[35] Zhang R and Zhu S 2006 Phys. Lett. A 348 110
[36] Su X Q and Wang A M 2007 Phys. Lett. A 369 196
[37] Aky"uz C, Aydiner E and M"ustecapliouglu "O E 2008 Opt. Commun. 281 5271
[38] Ma X S 2008 Opt. Commun. 281 484
[39] Choi K Y, Matsuda Y H and Nojiri H 2006 Phys. Rev. Lett. 96 107202
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[5] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[6] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[7] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[8] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[9] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[10] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[11] Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2017, 26(7): 070302.
[12] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[13] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[14] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[15] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie (谯洁), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(11): 110306.
No Suggested Reading articles found!