Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110312    DOI: 10.1088/1674-1056/19/11/110312
GENERAL Prev   Next  

The high squeezing and entanglement in regular loss modulated optical parametric amplifier

Zhao Chao-Ying(赵超樱)a)b)† and Tan Wei-Han(谭维翰)c)
a College of Science, Hangzhou Dianzi University, Hangzhou 310018, China;  b State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University,Taiyuan 030006, China; c Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  We investigate the quantum fluctuation characteristic for time dependent regular loss modulated optical parametric amplifier for below and above threshold regions. It is found that a high squeezing and entanglement can be achieved.
Keywords:  regular loss modulated      squeezing      entanglement  
Received:  07 April 2010      Revised:  18 May 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Shanxi, China (Grant No. 200904).

Cite this article: 

Zhao Chao-Ying(赵超樱) and Tan Wei-Han(谭维翰) The high squeezing and entanglement in regular loss modulated optical parametric amplifier 2010 Chin. Phys. B 19 110312

[1] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869
[2] Bowen W P, Treps N, Schnabel R and Lam P K 2002 Phys. Rev. Lett. 89 253601
[3] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[4] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
[5] Adamyan H H and Kryuchkyan G Yu 2004 Phys. Rev. A 69 053814
[6] Adamyan H H and Kryuchkyan G Yu 2006 Phys. Rev. A 74 023810
[7] Laurat J, Coudreau T and Fabre C 2005 Opt. Lett. 30 1177
[8] Laurat J, Coudreau T, Keller G, Treps N and Fabre C 2004 Phys. Rev. A 70 042315
[9] Laurat J, Coudreau T, Keller G, Treps N and Fabre C 2005 Phys. Rev. A 71 022313
[10] Zhao C Y and Tan W H 2006 J.Opt. Soc. Am. B 23 2174
[11] Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 273
[12] Reid M D 1989 Phys. Rev. A 40 913
[13] Zhao C Y, Tan W H and Guo Q Z 2003 Acta. Phys. Sin. 52 2694 (in Chinese)
[14] Zhao C Y and Tan W H 2007 J. Mod. Opt. 54 97
[15] Zhao C Y and Tan W H 2007 Chin. Phys. 16 644
[16] Adamyan N H, Adamyan H H and Kryuchkyyan G Yu 2008 Phys. Rev. A 77 023820
[17] Walls D F and Milburn G J 1994 Quantum Optics 2nd ed (New York: Springer)
[18] Yariv A 1989 Quantum Electronics 3rd ed (New York: Wiley)
[19] Zhao C Y and Tan W H 2009 Chin. Phys. B 18 4143 endfootnotesize
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[12] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!