Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110310    DOI: 10.1088/1674-1056/19/11/110310
GENERAL Prev   Next  

Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field

Zhong Wen-Xue(钟文学), Cheng Guang-Ling(程广玲), and Chen Ai-Xi(陈爱喜)
Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
Abstract  We present an alternative scheme for implementing the unconventional geometric two-qubit phase gate and preparing multiqubit entanglement by using a frequency-modulated laser field to simultaneously illuminate all ions. Selecting the index of modulation yields selective mechanisms for coupling and decoupling between the internal and the external states of the ions. By the selective mechanisms, we obtain the unconventional geometric two-qubit phase gate, multiparticle Greenberger–Horne–Zeilinger states and highly entangled cluster states. Our scheme is insensitive to the thermal motion of the ions.
Keywords:  a frequency-modulated field      unconventional geometric phase gate      Greenberger–Horne–Zeilinger states      cluster states  
Received:  14 October 2009      Revised:  01 July 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2005CB724508), the Scientific Research Foundation of Jiangxi Provincial Department of Education, China (Grant No. GJJ10133), and the Foundation of Talent of Jinggang of Jiangxi Province, China (Grant No. 2008DQ00400).

Cite this article: 

Zhong Wen-Xue(钟文学), Cheng Guang-Ling(程广玲), and Chen Ai-Xi(陈爱喜) Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field 2010 Chin. Phys. B 19 110310

[1] Deutsch D and Jozsa R 1992 Proc. R. Soc. A 439 553
[2] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[3] Berry M V 1984 Proc. R. Soc. London Ser. A 392% 45
[4] Aharonov and Anandan J 1987 Phys. Rev. Lett. 58 1593
[5] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003 % Phys. Rev. Lett. 90 160402
[6] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[7] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[8] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 % Nature 407 355
[9] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
[10] Zhu S L and Wang Z D 2003 Phys. Rev. A 67 022319
[11] Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502
[12] Chen C Y, Feng M, Zhang X L and Gao K L 2006 Phys. Rev. A 73 032344
[13] Xie H, Li H C, Yang R C, Lin X and Huang Z P 2007 Chin. Phys. 16 3382
[14] Feng X L, Wang Z S, Wu C F, Kwek L C, Lai C J and Ou C H 2007 Phys. Rev. A 75 052312
[15] Zhang Y Q, Jin X R and Zhang S 2008 Chin. Phys. B 17 424
[16] Shi Z G, Chen X W and Song K H 2009 J. Phys. B 42 % 035504
[17] Sorensen A and Molmer K 2000 Phys. Rev. A 62 022311
[18] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovi'c B, Langer C, Rosenband T and Wineland D J 2003 Nature 422 412
[19] Du J F, Zou P and Wang Z D 2006 Phys. Rev. A 74 020302
[20] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[21] Wu Y and Yang X X 1997 Phys. Rev. Lett. 78 3086
[22] Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 % Nature 404 256
[23] H"affner, H H"ansel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, K"orber T, Rapol U D, Riebe M, Schmidt P O, Becher C, G"uhne O, D"ur W and Blatt R 2005 Nature 438 643
[24] Schmidt-Kaler F, H"affner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 em Nature 422 408
[25] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. % 86 910
[26] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. % 86 5188
[27] Agarwal G S and Harshawardhan W 1994 Phys. Rev. A 50% R4465
[28] Zhou D L, Zeng B, Xu Z and Sun C P 2003 Phys. Rev. A 68 062303
[29] Nielsen M A and Dawson C M 2005 Phys. Rev. A 71 042323
[30] Zheng S B 2006 Phys. Rev. A 73 065802
[31] Zheng X J, Xu H, Fang M F and Zhu K C 2010 Chin. Phys. B 19 034207
[32] Tanamoto T, Liu Y X, Fujita S, Hu X D and Nori F 2006 % Phys. Rev. Lett. 97 230501
[33] Lai B H, Du G, Yu Y F, Zhang Z M and Liu S H 2010 Acta Phys. Sin. 59 1017 (in Chinese)
[34] Kiesel N, Schmid C, Weber U, T'oth G, G"uhne O, Ursin R and Weinfurter H 2005 Phys. Rev. Lett. 95 210502
[35] N"agerl H C, Leibfried D, Rohde H, Thalhammer G, Eschner J, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. A 60 145 endfootnotesize
[1] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[2] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2014, 23(2): 020313.
[3] Preparation of cluster states with trapped electrons on a liquid helium surface
Ai Ling-Yan(艾凌艳), Shi Yan-Li(石艳丽), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2011, 20(10): 100303.
[4] Fast generation of cluster states in a linear ion trap
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Zhang Xiao-Long(张小龙), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(9): 090317.
[5] Preparation of cluster state in large detuned cavity
Zou Chang-Lin(邹长林), Gao Guo-Jun(高国军), Lu Yan(卢艳), Li Da-Chuang(李大创), Yang Ming(杨名), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2008, 17(4): 1174-1177.
[6] Generation of atomic Greenberger-Horne-Zeilinger states and cluster states through cavity-assisted interaction
Huang Xiu-Hua (黄秀花), Lin Xiu-Min (林秀敏), Lin Gong-Wei (林功伟), Chen Zhi-Hua (陈志华), Tang Yao-Xiang (汤耀祥). Chin. Phys. B, 2008, 17(12): 4382-4387.
[7] Efficient scheme of quantum SWAP gate and multi-atom cluster state via cavity QED
Jiang Chun-Lei(姜春蕾), Fang Mao-Fa(方卯发), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2008, 17(1): 190-193.
[8] Cluster states prepared by using hot trapped ions
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), and Huang Zhi-Ping(黄志平). Chin. Phys. B, 2007, 16(8): 2219-2223.
[9] Dynamics of the entanglement witness for three qubits in common environment
Lu Huai-Xin(逯怀新). Chin. Phys. B, 2007, 16(7): 1878-1882.
[10] A scheme for the implementation of unconventional geometric phase gates with trapped ions
Xie Hong(谢鸿), Li Hong-Cai(李洪才), Yang Rong-Can(杨榕灿), Lin Xiu(林秀), and Huang Zhi-Ping(黄志平). Chin. Phys. B, 2007, 16(11): 3382-3385.
[11] Generation of four-atom cluster states in thermal cavity and implementing remote controlled not gate
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Chen Mei-Xiang(陈美香), and Lin Xiu(林秀). Chin. Phys. B, 2006, 15(10): 2315-2319.
No Suggested Reading articles found!