Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110308    DOI: 10.1088/1674-1056/19/11/110308
GENERAL Prev   Next  

The ground-state entanglement in the spin-XX chain with a magnetization current

Zhang Yong(张勇), Wang Chuan(王川), and Jin Guang-Sheng(金光生)
Department of Physics, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The ground-state entanglement in a transverse spin-1/2 XX chain with a magnetization current is studied. By introducing a magnetization current to the system, a quantum phase transition to current-carrying phase may be presented with the variation of the driving field $\lambda$ for the magnetic field >1; and the ground-state entanglement arises simultaneously at the critical point of quantum phase transition. In our model, the introduction of magnetization current may result in more entanglement between any two nearest-neighbour spins.
Keywords:  entanglement      current      correlation      concurrence  
Received:  09 April 2010      Revised:  02 June 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2010CB923202), the National Natural Science Foundation of China (Grant Nos. 10704010, 10947151 and 60704017), Chinese Universities Scientific Fund (Grant No. BUPT2009RC0710), and the SRFDP Program of Education Ministry of China.

Cite this article: 

Zhang Yong(张勇), Wang Chuan(王川), and Jin Guang-Sheng(金光生) The ground-state entanglement in the spin-XX chain with a magnetization current 2010 Chin. Phys. B 19 110308

[1] Bennett C and DiVincenzo D P 2000 Nature (London) 404 247
[2] DiVincenzo D P 1995 Science 270 255
[3] Sachdev S 2001 Quantum Phase Transitions (Cambridge, U.K.: Cambridge University Press)
[4] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 32110
[5] Gu S J, Lin H Q and Li Y Q 2003 Phys. Rev. A 68 2330
[6] Vidal J, Mosseri R and Dukelsky J 2004 Phys. Rev. A 69 054101
[7] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[8] Yang M F 2005 Phys. Rev. A 71 30302
[9] Bose S 2003 Phys. Rev. Lett. 91 207901
[10] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[11] Benjamin S C and Bose S 2003 Phys. Rev. Lett. 90 247901
[12] Zotos X and Prelovvsek P 2003 cond-mat/0304630
[13] Zotos X and Naef F 1997 Phys. Rev. B 55 11029
[14] Antal T and R'acz Z 1997 Phys. Rev. Lett. 78 167
[15] R'acz Z 2000 J. Stat. Phys. 101 273
[16] Antal T, R'acz Z, R'akos A and Sch"utz G M 1998 Phys. Rev. E 57 5184
[17] Eisler V and Zimbor'a Z 2005 Phys. Rev. A 71 042318
[18] Zhang Y, Liu D and Long G L 2007 Chin. Phys. 16 324
[19] Liu D, Zhang Y, Liu Y and Long G L 2007 Chin. Phys. Lett. 24 8
[20] Liu D, Zhang Y and Long G L 2007 Prog. Nat. Sci. 17 1147
[21] Dzyaloshinskii I E 1958 J. Phys. Chem. Solids 4 241
[22] Moriya T 1960 Phys. Rev. 120 91
[23] Latorre J I, Rico E and Vidal G 2003 quant-ph/0304098, and references therein.
[24] Hill S and Wootters W K 1998 Phys. Rev. Lett. 78 5022
[25] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[26] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[27] O'Connor K M and Wootters W K 2001 Phys. Rev. A 63 0520302
[28] Wang X G 2002 Phys. Lett. A 301 1
[29] Barouch E, McCoy B M and Dresden M 1970 Phys. Rev. A 2 1075
[29] Barouch E and McCoy B M 1971 Phys. Rev. A 3 786
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[4] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[5] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[6] Investigating the characteristic delay time in the leader-follower behavior in children single-file movement
Shu-Qi Xue(薛书琦), Nirajan Shiwakoti, Xiao-Meng Shi(施晓蒙), and Yao Xiao(肖尧). Chin. Phys. B, 2023, 32(2): 028901.
[7] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[8] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[9] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[10] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[11] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[12] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[13] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[14] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[15] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
No Suggested Reading articles found!